

ADVANCED
INSPECTOR

TUTORIALS (v1.52)

 P a g e | 2

Contents
TUTORIALS (v1.51) .. 1

Introduction .. 3

Converting an Existing Class .. 4

Active .. 4

Passive ... 4

Using a Condition to Hide an Item .. 5

Forcing a List of Choices .. 7

Conversion between Display and Serialization ... 9

Contact .. 11

 P a g e | 3

Introduction

 The Advanced Inspector is not an easy package to grasp, and we know that. There's many

reasons for that; lot of features, drastically different design than Unity, no pandering with easier, smaller

and more limited features, and tons of details to learn. As described, the goal of the Advanced Inspector

is to make it useless for you to write custom editor. It's a tall order and to reach that the number of

things to learn may appear overwhelming.

 Another issue is that the main documentation is written in technical term. We acknowledge that

Unity's users are not always professional - there is a lot of newcomers or indie studios - and this kind of

wording may frighten you.

 However, we cannot translate our technical documentation into simpler term without doubling

the document size, which is already massive with over 40 pages. It means finding information would

only become much harder.

 This document have been created for attempting to compensate for this lack of easiness. It will

simply contains very simple and progressive tutorials about how to achieve specific result with the

Advanced Inspector.

 Let it be clear, if you cannot find or understand how to do something, please let us know! We

will be glad to help you. Contact us at admin@lightstrikersoftware.com and we will reply as soon as

possible.

mailto:admin@lightstrikersoftware.com

 P a g e | 4

Converting an Existing Class

 As of 1.51, you don't need to do anything to convert your class. The [AdvancedInspector]

attribute is now use when you want to override some specific behaviour. You can turn off this behaviour

in Unity Preferences panel, section Adv. Inspector.

 Internally, Advanced Inspector has two mode; an active and a passive mode.

 Active
 In active mode which is the default mode, AI displays everything that Unity does, following

Unity's inspector rules; public fields, SerializedField, HideInInspector and so on. This way, you have

nothing to change in your class to have exactly the same data displayed.

 In Active mode, you can add [Inspect] attribute to items that Unity usually don't display, such as

method, properties or hidden fields.

 Passive
 The passive mode is what Advanced Inspector was prior to 1.51. The passive mode can be

triggered in two way; turn off the option "Inspect Default Items" in the Preferences panel, or add

[AdvancedInspector] attribute on your class definition. Using this will hide everything and only display

the items that has the [Inspect] attribute.

 This is useful when you want a finer control over what is inspected and what isn't.

 P a g e | 5

Using a Condition to Hide an Item

 One of the major advantage of Advanced Inspector is that many of the attributes are dynamic.

The behaviour their trigger can change based on condition you provide. If you look at the Inspect

attribute, you will see this;

 The "IRuntimeAttribute" is an interface that defines an attribute that can take the name of a

function as constructor parameter. Knowing this, the tool retrieves the function and invoke it when

required.

 Often you would wish to hide an item if some condition of another variable is met or not. A

good example is how the Light in Unity shows and hides variable depending on the type of the light. For

example, if you select a directional light, you won't have the "range" option showing up.

 Let's take the following;

 Let's say you want the "activateLight" variable to show up on the Inspector only if the

GameObject in "go" has a Light component.

 The Inspect attribute can take the name of a function as constructor. You can go see the

signature this function should take directly from the attribute definition;

 This means the function you would write must have no parameter, and must return a boolean. A

function that test if a GameObject has a Light will look like this;

public delegate bool InspectDelegate();

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 public GameObject go;

 public bool activateLight = false;
}

public class InspectAttribute : Attribute, IRuntimeAttribute

 P a g e | 6

 This function returns "true" if the GameObject is not null and if it has a Light component. What

is left to do is tell the Inspect attribute which function to use to determine if the item should be

displayed or not;

 Runtime attribute are extremely powerful and give great dynamism to how your class are

inspected. They can hide, change name, change color, limit choices and so on. You can even write your

own attribute that implement IRuntimeAttribute.

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 [Inspect]
 public GameObject go;

 [Inspect("HasLight")]
 public bool activateLight = false;

 private bool HasLight()
 {
 return go != null && go.GetComponent<Light>() != null;
 }
}

 private bool HasLight()
 {
 if (go == null)
 return false;

 Light light = go.GetComponent<Light>();
 return light != null;
 }

 P a g e | 7

Forcing a List of Choices

 You often ends up having an item that display too many choices, or even the wrong choices.

With Unity, you would be forced to write a Custom Editor just for the sake of controlling what data is

displayed. (See "Using a Condition to Hide an Item")

 With the Advanced Inspector, you can do that by writing a single function. First, add the

"Restrict" attribute to the item you want limited;

 This attribute takes a string as paramater, which should be the name of one function in your

class. The function can be private or public, it doesn't matter. The name is case sensitive! So let's write a

function that return a list of number I want this field to be limited to;

 This function should return a collection that can be cast to a IList. For example, you can use an

array, ArrayList, List<> or any collection that implement the IList interface. In the inspector, your class

will now look like this;

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 [Inspect, Restrict("ValidValues")]
 public float someNumber;

 private IList ValidValues()
 {
 return new float[] { 0, 2, 4, 6, 8, 10 };
 }
}

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 [Inspect, Restrict("ValidValues")]
 public float someNumber;
}

 P a g e | 8

 Restricting displayed values is a very powerful feature. It allows you to guaranty that some data

is never wrong or that someone would be unable to input the wrong one. It also makes it much easier to

change complex data.

 You can list values, types, files, names or anything that you want limited in choices.

 The Restrict attribute is a tool that will be used many times in the course of this document.

 P a g e | 9

Conversion between Display and Serialization

 One thing that is asked often on Unity's forum or ask website is "How do I save a Type?". Usually

the answer goes along the lines of "You cannot" or "You need to write some complex Custom Editor".

 With the Advanced Inspector, it's easy as pie.

 The first thing to understand about "Type" is that you cannot directly save it. This object is only

created at runtime and simply cannot be saved. However, you can save something that is a indirect

reference to it; the Assembly Qualified Name, which is a string.

 Since Unity has no issue saving strings, let's start by making a field to save it;

 The field is private because we don't want anybody to directly access this data. While the

Assembly Qualified Name makes sense to the .NET Framework, it is just gibberish for us. To convert this

string back and from the proper Type, we will use a property (getter/setter);

 As you can see here, the getter/setter is serving as a translation layer between the saved data,

and the data we want to use or see.

 The second issue here is that Unity or the Advanced Inspector has no idea how to display a

"Type", and it's normal as there is not much useful in it to display. However, the Restrict attribute - as

seen in the chapter "Forcing a List of Choices" - allows us to build a list of items we wish the user to

choose from, even types.

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 [SerializeField]
 private string assemblyQualifiedName;

 public Type myType
 {
 get { return Type.GetType(assemblyQualifiedName); }
 set { assemblyQualifiedName = value.AssemblyQualifiedName; }
 }
}

[AdvancedInspector]
public class MyBehaviour : MonoBehaviour
{
 [SerializeField]
 private string assemblyQualifiedName;
}

 P a g e | 10

 Let's say we want to display a list of all the class that derive from "MonoBehaviour", which in

most case would be a list of the class we wrote. For this, we will use the System.Reflection namespace.

It's an incredibly powerful set of tool, and if you don't know about it, you should definitely give it a look.

For now, let's just say that the way to get the list of classes is like this;

 This function loops in all the loaded assemblies and get all the types. It checks that the type is

not directly "MonoBehaviour", that is not abstract and that it can be assigned as "MonoBehaviour" - in

essence, that it is deriving from MonoBehaviour.

 What is left to do is tell the Restrict attribute to use this method;

 If you have many script, you may end up with a very long list and it would be very hard to

navigate in the huge drop down list. Luckily, the Restrict attribute also have another parameter;

 This way, instead of a drop down list, a "+" icon will show up. When clicked on it, a dialog box

with a search field will show up listing all the values we returned in "GetTypes". This method of display

works best with large collection of choice.

[Inspect, Restrict("GetTypes", InspectorDisplay.Toolbox)]

 [Inspect, Restrict("GetTypes")]
 public Type myType
 {
 get { return Type.GetType(assemblyQualifiedName); }
 set { assemblyQualifiedName = value.AssemblyQualifiedName; }
 }

 private IList GetTypes()
 {
 List<Type> types = new List<Type>();
 foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies())
 {
 foreach (Type type in assembly.GetTypes())
 {
 if (type != typeof(MonoBehaviour) && !type.IsAbstract &&
 typeof(MonoBehaviour).IsAssignableFrom(type))
 {
 types.Add(type);
 }
 }
 }

 return types;
 }

 P a g e | 11

Contact

 The Advanced Inspector was a huge undertaking, and for that reason the first few versions are

expected to have hidden issues that we are not aware of. We will fix those bugs as quickly as we can,

however we need to learn about them. To send us any bug report or feature request, contact us at;

 Email : admin@lightstrikersoftware.com

 Website : www.lightstrikersoftware.com

admin@lightstrikersoftware.com
www.lightstrikersoftware.com

