
This cached version of the tutorial may be outdated.

For the latest version, please visit the live website.

TUTORIAL

OBJECTIVE

In this tutorial, you will learn how to use all of the functionalities of Chronos by enabling time-control in a small
existing platformer game. For that purpose, we'll use the Unity 2D platformer demo. The concepts you will learn
apply to any type of game, of any genre, in 2D or 3D.

Before getting started, we recommend watching the 2D Game Development Walkthrough video from Unity,
which gives an overview of the project structure for the platformer demo that we'll be modifying.

This tutorial assumes that you have a basic knowledge of Unity and C#.
If not, please see their respective tutorials or documentation before
starting.

END RESULT

CLICK TO PLAY

http://ludiq.io/chronos/tutorial
http://unity3d.com/learn/tutorials/modules/beginner/2d/2d-overview

Controls
W / ↑: Jump
A / ←: Left
D / →: Right
S / ↓: Place Bomb
Space: Shoot
1: Rewind
2: Pause
3: Slow
4: Normal
5: Accelerate

You can play the final game in the web player above. It is
essentially the same game as the platformer demo, except that
you can manipulate time for enemies, and any bomb you throw
will have a "force field" that will slow (and therefore trap!) all
enemies around it before exploding.

Pssst... You start the game with 100 bombs for testing. To
turn off the music (so you aren't driven insane during the
tutorial), just pause time!

 Overview of the components

Before diving head first into implementing Chronos for our platformer, it's worth taking a minute to understand
how each of its parts works.

Just like any Unity game, Chronos works with components that you attach to GameObjects. In total, it provides 6
easy components that, when combined correctly, make the magic happen. In this section, we'll cover each of
them briefly; we'll get back to the details later in the tutorial.

Don't worry if you have trouble understanding the whole structure of
Chronos at first! It will become much clearer once you start
experimenting with it. In fact, using Chronos is much simpler than it
seems.

At its root, Chronos requires a single Timekeeper object, which is basically just a registry for global clocks. It
must be present in every scene.

More importantly, Chronos functions with Clocks. A clock is exactly what you would expect it to be: a component
that ticks at every frame (based on its speed, i.e. its time scale) and gives you time measurements. In Chronos,
there are 3 types of clocks: global, local, and area.

To 'read' time measurements from one or many clocks, each GameObject must use its own Timeline component.
Quite literally, this means every object can progress on its own specific timeline, instead of just one global
timeline. This allows for a variety of interesting time effects and gameplay mechanics.

Component Description

Timekeeper
The timekeeper is a singleton tasked with keeping track of global
clocks in the scene. One and only one Timekeeper is required per
scene.

Clock (Abstract)

The base class for every other type of clock. It has a timeScale
property to adjust at what speed its time progresses. Any clock can
also have a parent global clock with which it will multiply its own
time scale.

Global Clock

Global Clocks are clocks that can be accessed and referenced from
anywhere by a unique string key (e.g. "Enemies" , "World" , etc).
They must always be attached as components of the Timekeeper
object. They are the only kind of clock that can be set as parents of
other clocks. They can be used to apply time effects to groups of
objects.

Local Clock
Local Clocks are clocks that apply only to the GameObject to which
they are attached. They can be used to make individual objects
progress at different speeds.

Area Clock

Area Clocks are clocks that affect all GameObjects within their
collider. Their effects stack with any other clock these objects might
be observing, and with any overlapping area clock. They can be used
to apply time effects to a restricted area.

Timeline

A Timeline combines measurements from one or more clocks to
provide a single but independent time, delta time and time scale for
every GameObject. It should be attached to every GameObject that
should be affected by Chronos.

You can click on the icon of any component in the previous table to
access its documentation.

http://ludiq.io/chronos/documentation#Timekeeper
http://ludiq.io/chronos/documentation#Clock
http://ludiq.io/chronos/documentation#GlobalClock
http://ludiq.io/chronos/documentation#LocalClock
http://ludiq.io/chronos/documentation#AreaClock
http://ludiq.io/chronos/documentation#Timeline

EXAMPLE

Here's a diagram that shows an overview of how a sample Chronos scene could be configured, in this case a
tower defence game:

So, what's going on in this Chronos setup? First, we have our Timekeeper singleton at the top. In it, we registered
4 global clocks (Root, Interface, Enemies and Turrets) with parenting.

The Root and Interface clocks are separate, because we want our user interface elements to behave on a
constant time scale (most likely always 1), without being affected by the game's time scale. This way, for
example, we can pause the game by setting the Root clock's time scale to 0 and still have an animated menu
pop out.

We then have two children of the Root clock, Enemies and Turrets. In our tower defence game, we probably want
to be able to affect enemies independently from turrets. This would allow us, for instance, to have an ability that
accelerates all turrets while maintaining the enemies at their regular speed.

Then, we configured a local clock that only affects the player avatar. Since there is only one player in the scene
at once, there is no need for a global clock.

Each of our GameObjects (3 enemies, 2 turrets and 1 player) has its own timeline. This timeline observes any
clock to which we made it point and returns the combined measurements that the GameObjects use for
gameplay.

Last but not least, at this moment in the game, we used an ability that created a spherical area clock that
encompasses the third enemy and the first turret. By setting this clock's time scale between zero and one, these
objects will be slowed down.

BACK TO THE TUTORIAL

If all that seems overwhelming, don't worry. Indeed, adding time control to your game is literally a whole new
dimension to think about. However, Chronos is built to make that process as easy as possible. We will go through
each step in the course of this tutorial.

The structure we will create in this tutorial is a simplified version of the one above. Basically, we will only affect
enemies and their spawners. All other objects in the scene (player, missiles, background elements, etc.) will be
left untouched, meaning they will progress at their regular speed through Unity's Time class. Here is the
diagram for the structure we will implement:

The obsolete API warning when importing the 2D
Platformer.

If you've made it this far, you've completed the hardest part of the tutorial — congratulations! Now go grab
some coffee, and let's control time!

 Creating the project

For the purpose of this tutorial, create a new blank Unity project like you usually would. Choose any project
name and location and switch the preset to 2D. Next, you'll need to import two packages: the platformer demo
and, of course, Chronos. The asset store links to both are below.

Create a new 2D project.

 CHRONOS 2D PLATFORMER

Import the packages in the root assets directory of your newly
created project. For the Chronos package, make sure that the
Gizmos directory is not in any subfolder — otherwise, icons in
the scene view may not render properly.

You might get a warning about the platformer asset being
made with obsolete APIs, because that package was built for
Unity 4.3. Click I Made a Backup. Go Ahead! and let Unity port it
for you.

If you plan on using Chronos from UnityScript (JavaScript), move the
Chronos folder to Plugins/Chronos . That will tell Unity to compile
the Chronos components before your own scripts, so that the latter can
access the former correctly. This is not required for C# users.

As a last step before we get started, disable the script icons from Chronos so that they do not appear in the
scene view. To do so, click on the Gizmos dropdown in the top right corner of the scene view, then click on the

http://u3d.as/bX5
https://www.assetstore.unity3d.com/en/#!/content/11228

Disable each Chronos icon in the gizmos menu.

icon of every Chronos script to render each one faded out. Do
not uncheck the gizmo checkboxes.

Finally, open up the Scenes/Level scene that contains the
platformer. Our project is now properly set up and we are ready
to use Chronos!

The base platformer scene that we are going to edit.

 Creating a Timekeeper

The first thing you want to do in any Chronos scene is to create a Timekeeper object. Think of it as the main
camera, but for time: without it, nothing will function properly.

Creating a Timekeeper is as easy as creating any built-in Unity object. You can create one from the GameObject
menu, by right-clicking any empty space in the hierarchy window.

From the GameObject menu From the Hierarchy
window

Once the timekeeper is in your scene, there is no further configuration needed! We can start adding some clocks.

For more information about the Timekeeper class, see the
Documentation.

 Adding a Clock

Select the Timekeeper to display its inspector. There, you will see that it already contains a Root clock by
default. Let's add our clock by clicking the Add Component button, then choosing Time > Global Clock .

Then, set its key to Enemies and its parent to Root . Since we want our enemies to start at normal speed, there
is no need to adjust the Time Scale or Paused properties.

http://ludiq.io/chronos/documentation#Timekeeper

Add a global clock. Set its properties.

For more information about the GlobalClock class, see the
Documentation.

 Adding Timelines

ENEMIES

Now that we have our global clock, we need to tell our enemies to look at it! For that, we only need to add a
Timeline component to the enemy prefabs.

Locate the enemy prefabs: they should be located at
Prefabs/Characters/enemy1 and Prefabs/Characters/enemy2 .
Using the same method as in the previous step, add a Timeline component
to each.

Timelines have two modes: one for observing a local clock, and one for
observing a global clock. Since our case is the latter (we want to point at
the "Enemies" clock we just created), set the mode to Global, and the Global
Clock to "Enemies".

The timeline will automatically take care of synchronizing the animation on
our enemies, along with the the transform and physics (make sure you
check the Record Transform option), with its time scale. It will also allow
us to use timing measurements in scripting later on.

Feel free to play around with the recording time and interval properties; these will affect how long your rewinds
can be, and how precise they feel.

Allowing more rewind time or precision takes more memory (RAM). The default values should offer a decent
duration and precision for most cases, but don't be afraid to increase them! Chronos is well optimized in that
regard, so you should almost certainly be able to meet the needs of your game. The inspector will instantly show
you how much memory will be allocated by the timeline.

Chronos supports multiple object editing for all its components. For
example, you can select the enemy1 and enemy2 prefabs at the same
time and create both timelines at once.

http://ludiq.io/chronos/documentation#GlobalClock

MUSIC

We also want to give an audio feedback to the player so they understand how time is progressing. For this
reason, we will synchronize the music with the time scale of our enemies. To do that, simply locate the music
object in the scene hierarchy, and attach at timeline to it, pointing at the same "Enemies" clock. That's it!
Chronos will take care of adjusting the pitch of the audio source for you.

For more information about the Timeline class, see the
Documentation.

 Controlling time in script

Still there? Have you finished that coffee yet? No? Good. Our component setup is now done. Now, it's time to get
our hands dirty with scripting.

CREATING THE BASE BEHAVIOUR

The first thing we'll do is create a base behaviour that offers a useful shortcut to use the Timeline component.
It's an optional one-time operation, but it will make your code much more legible.

When using Chronos, you will almost always work with the Timeline class, attached as a component to your
game objects. It provides all the time measurements that you need, such as deltaTime and timeScale ,
and a few more utility methods that we'll cover later on.

Just like you use transform.position as a shortcut of GetComponent<Transform>().position ,
you'll be able to use time.deltaTime instead of the verbose GetComponent<Timeline>.deltaTime .

Create a new script under Scripts called BaseBehaviour , and give it the following code:

http://ludiq.io/chronos/documentation#Timeline

From now on, any script inheriting from BaseBehaviour will have access
to the time shortcut property.

SETTING THE TIME SCALE VIA INPUT

Next, we want to change the time scale of our Enemies clock by pressing the keys 1 through 5 on the keyboard,
from rewind to accelerate. Luckily, since we have done our setup correctly, this is a very trivial script.

Create a new script under Scripts called TimeControl , and add give it the following code:

using UnityEngine;
using Chronos;

public class BaseBehaviour : MonoBehaviour
{
 public Timeline time
 {
 get
 {
 return GetComponent<Timeline>();
 }
 }
}

If you want to make the time scale change smoothly, you can use the
LerpTimeScale method.

Attach this script to any GameObject in the scene. In this case, it would make sense to attach it to the
Timekeeper. Now, try playing the game and pressing the keys. You'll notice things don't work quite like they
should...

Accelerating and slowing down time doesn't work

Pausing time makes enemies ignore gravity

Rewinding offers some unpredictable behaviour

So, what's wrong? Well, the enemy script is trying to move without any knowledge of Chronos. Luckily, it's an
easy fix.

MODIFYING THE ENEMY SCRIPT

Chronos will take care of the animations, physics, audio and particle effects for you. However, you still need to
make sure your scripts take into consideration the timing measurements that Chronos calculates!

In the platformer demo, the enemy movement is controlled by setting their velocity in the X axis. This occurs in
the file Scripts/Enemy at line 48 (line breaks added for legibility):

using UnityEngine;
using Chronos;

public class TimeControl : MonoBehaviour
{
 void Update()
 {
 // Get the Enemies global clock
 Clock clock = Timekeeper.instance.Clock("Enemies");

 // Change its time scale on key press
 if (Input.GetKeyDown(KeyCode.Alpha1))
 {
 clock.localTimeScale = -1; // Rewind
 }
 else if (Input.GetKeyDown(KeyCode.Alpha2))
 {
 clock.localTimeScale = 0; // Pause
 }
 else if (Input.GetKeyDown(KeyCode.Alpha3))

http://ludiq.io/chronos/documentation#Clock.LerpTimeScale

We previously used a timeline on our enemy to enable rewinding. The problem here is that the timeline we
attached has its own properties and methods for rigidbodies, and therefore becomes confused! We are bypassing
Chronos by setting the rigidbody's velocity directly. For it to work correctly, we have to tell the timeline — not the
rigidbody — to change its velocity:

We tried to minimize the amount of code change required to integrate
Chronos into a project. However, there are some quirks such as this one
that we couldn't avoid.

For a list of all the small changes needed to migrate your script to
Chronos, see the Migration guide.

When rewinding, the timeline will interpolate between recorded snapshots and apply them. In that state, the
rigidbody isn't really a physical object anymore; it's set to kinematic. For this reason, if we try change its physical
properties, Chronos will throw an exception. Therefore, we need to add an if clause around that movement line
to verify that time is going forward:

That's it! Notice that we used our time shortcut, so we need to change the base class of the script (and of
course, add Chronos as a using):

GetComponent<Rigidbody2D>().velocity = new Vector2
(
 transform.localScale.x * moveSpeed,
 GetComponent<Rigidbody2D>().velocity.y
);

// Use Timeline instead of Rigidbody2D
time.rigidbody2D.velocity = new Vector2
(
 transform.localScale.x * moveSpeed,
 time.rigidbody2D.velocity.y
);

if (time.timeScale > 0) // Move only when time is going forward
{
 time.rigidbody2D.velocity = new Vector2
 (
 transform.localScale.x * moveSpeed,
 time.rigidbody2D.velocity.y
);
}

http://ludiq.io/chronos/migration

Recommended: For more examples of using the Timeline class, see
the Documentation.

If you play the game now, enemies should move as expected in regards to time. There is one last detail that's
wrong, however: the spawner keeps spawning at the same speed no matter the time scale, and enemies
rewound up to the moment of their spawn are not destroyed! Let's fix that.

MODIFYING THE SPAWNER

First, add a timeline component to the spawner prefab (Prefabs/spawner) like we did for the enemies. Set it
to observe the global "Enemies" clock as well. There is no need to record the transform here as it won't move.

Open up the spawner script (Scripts/Spawner) in your code editor. It should look like this:

We can see that the spawning timing is done through the InvokeRepeating method. Chronos doesn't
provide an equivalent for this method out of the box, because a simple coroutine can do the same thing — with

using UnityEngine;
using System.Collections;
using Chronos;

public class Enemy : BaseBehaviour // ...

using UnityEngine;
using System.Collections;

public class Spawner : MonoBehaviour
{
 public float spawnTime = 5f; // The amount of time between each spawn.
 public float spawnDelay = 3f; // The amount of time before spawning starts.
 public GameObject[] enemies; // Array of enemy prefabs.

 void Start ()
 {
 // Start calling the Spawn function repeatedly after a delay .
 InvokeRepeating("Spawn", spawnDelay, spawnTime);
 }

 void Spawn ()
 {
 // Instantiate a random enemy.

http://ludiq.io/chronos/documentation#Timeline-Examples
http://docs.unity3d.com/ScriptReference/MonoBehaviour.InvokeRepeating

more performance and flexibility.

For that reason, let's first change our code to do exactly the same thing, but with a coroutine:

At this point, Chronos still isn't passing timing calculations to the spawner. That's because we're using Unity's
WaitForSeconds method, which only respects Unity's Time.timeScale , a value we haven't even
touched. That means our spawner will execute at normal speed no matter what time scale we assign to our
Enemies clock.

Fortunately, converting any coroutine to Chronos is easy. Simply replace new WaitForSeconds() by
Timeline.WaitForSeconds . No further work is needed. The updated version of our spawner component is
below (notice the using and the base behaviour):

using UnityEngine;
using System.Collections;

public class Spawner : MonoBehaviour
{
 public float spawnTime = 5f; // The amount of time between each spawn.
 public float spawnDelay = 3f; // The amount of time before spawning starts.
 public GameObject[] enemies; // Array of enemy prefabs.

 void Start ()
 {
 // Start calling the Spawn coroutine.
 StartCoroutine(Spawn());
 }

 IEnumerator Spawn ()
 {
 yield return new WaitForSeconds(spawnDelay); // Wait for the delay

http://docs.unity3d.com/ScriptReference/WaitForSeconds
http://docs.unity3d.com/ScriptReference/Time-timeScale
http://ludiq.io/chronos/documentation#Timeline.WaitForSeconds

For our spawner to be coherent in time, the last thing we need to do is make it able to despawn enemies once
they're rewound up to the moment of their instantiation. Chronos makes this process simple with a concept
called Occurrences.

 Using Occurrences

Chronos introduces a powerful new scripting concept called Occurrences. An occurrence is basically a two-way
event (forward and backward) scheduled to any point in time. It allows any piece of code to become easily
rewindable without having to think of any time calculation.

Note that occurrences can also be one-way (forward only), for games that don't require rewind but would still
like to take advantage of effortless planning. For example, no need to use a coroutine with WaitForSeconds
to execute code in the future — just use time.Plan(delay, YourMethod) .

Using an occurrence, we will easily be able to despawn our enemies. However, you should first read the
occurrence documentation and examples (it takes about 10 minutes) to better understand how occurrences work
in simple scenarios. Click here to access the documentation:

Please read: Occurrence Documentation & Examples

using UnityEngine;
using System.Collections;
using Chronos;

public class Spawner : BaseBehaviour
{
 public float spawnTime = 5f; // The amount of time between each spawn.
 public float spawnDelay = 3f; // The amount of time before spawning starts.
 public GameObject[] enemies; // Array of enemy prefabs.

 void Start ()
 {
 // Start calling the Spawn coroutine.
 StartCoroutine(Spawn());
 }

 IEnumerator Spawn ()
 {

http://ludiq.io/chronos/documentation#Occurrence

Don't worry, we'll be waiting for you right here:

Done reading? Cool. Now that you understand occurrences, let's change our enemies instantiation code from the
spawner script. The line we want to change is this one:

Instead of this line, we want to instantly execute an occurrence that will instantiate the enemy, and destroy it
when time rewinds to the current time. This occurrence will be repeatable, because if we let time flow normally
after a rewind, we want that enemy to respawn at the same moment. Since this is a one-time piece of code in
our game, there's no need to subclass the Occurrence class; we'll just use the delegates shortcut. Here is the
framework:

The instantiation code stays exactly the same, except that we return the instantiated GameObject to be passed
as transfer to the backward delegate. When rewinding, we'll use a simple Destroy on that GameObject.

yield return WaitForFinishReading(documentation.occurrences);

Instantiate(enemies[enemyIndex], transform.position, transform.rotation);

time.Do // Instantly
(
 true, // Repeatable

 delegate() // On forward
 {
 // Spawn the enemy.
 // Must return a state transfer object.
 // In this case, we will return the spawned enemy.
 },

 delegate(object transfer) // On backward
 {
 // Destroy the transfered spawned enemy.
 }
);

That's it! The final code for the spawner is below:

Don't forget to add a timeline to the spawner prefab!

We are now done with enemies and spawners. Take some time to play your awesome time-controlled platformer
and stretch your legs. When you're done, we'll finish in style with one of the coolest features Chronos has to

time.Do
(
 true, // Repeatable

 delegate() // On forward
 {
 GameObject enemy = Instantiate(enemies[enemyIndex], transform.position, transform
 return enemy;
 },

 delegate(GameObject enemy) // On backward
 {
 Destroy(enemy);
 }
);

using UnityEngine;
using System.Collections;
using Chronos;

public class Spawner : BaseBehaviour
{
 public float spawnTime = 5f; // The amount of time between each spawn.
 public float spawnDelay = 3f; // The amount of time before spawning starts.
 public GameObject[] enemies; // Array of enemy prefabs.

 void Start ()
 {
 // Start calling the Spawn coroutine.
 StartCoroutine(Spawn());
 }

 IEnumerator Spawn ()
 {
 yield return time.WaitForSeconds(spawnDelay); // Wait for the delay

On the left, the shape of the area clock for the wizard's
ability. On the right, the shape for the bullet-stopping
wall.

offer: area clocks.

 Adding an Area Clock

Weren't you amazed the first time you saw Neo stop
bullets in the Matrix? Or when you saw the Wizard's
slow time bubble in Diablo III? All of this (and more) is
possible with Chronos' Area Clock component.

Area clocks are clocks that affect only the objects that
enter their collider. They can take any (convex) shape
and size, in 2D or 3D, and apply a time scale within. For
example, stopping bullets could be implemented by a
high, wide and thin cubic area clock with a time scale of
0. The slow time bubble could be created with a
spherical area clock with a low time scale (probably
around 0.25).

Because bullets have speeds that are too high for Unity's physics
engine, they will not be stopped automatically by a thin area clock —
they'll go right through the collider! Raycasting must be used for such
scenarios.

What we will create in our platformer is a "trap" around the bombs we throw. Whenever an enemy gets near the
bomb's "force field", it will be immobilized so that it cannot escape before the bomb explodes. For that purpose,
we'll need to use 3 components: a circle collider, an area clock, and a sprite renderer to visually display the force
field.

First, place the Prefabs/Props/bomb prefab anywhere in your scene view. Then, add an empty GameObject
child to it, called Trap , which will contain our trap components.

https://www.youtube.com/watch?v=guVAeFs5XwE
https://www.youtube.com/watch?v=QvghTIXhKhA

The final look of our trap
inspector.

The bomb prefab instance and its new trap child.

Let's then add our 3 components.

First, the renderer from Rendering > Sprite Renderer . Choose the
Sprites/_FX/Circle sprite, and give it a translucent color that you like. Set
its sorting layer to Character so that it renders above the background.

Second, the collider from Physics 2D > Circle Collider 2D . Toggle the Is Trigger
checkbox and give it a radius of 9 so that it matches the size of the rendered
circle.

Third, the area clock from Time > Area Clock 2D . You can either set its time
scale to 0 or toggle the "Paused" checkbox — both will have the same effect.
For now, leave the mode at Instant.

Select the bomb instance in the scene again and click Apply from the prefab
toolbox on top of the inspector to save your changes.

Remember to apply changes you make to in-scene
prefabs.

How the bomb now looks in the scene view.

Try playing your game now. You'll notice the trap doesn't work! That's because we haven't set up our collisions
properly.

Area clocks use Unity's built-in collisions to work. That means:

1. The area clock needs a trigger collider for OnTriggerEnter and OnTriggerExit
2. The object that enters the area clock must have a rigidbody for the collisions to be registered;
3. The layer of the area clock is used to select what objects it affects.

We're good for conditions 1 and 2, but not for 3. First, create a new layer called "Trap" and apply it to our trap
object. Then, open up Edit > Project Settings > Physics 2D and configure the collision matrix so the Trap layer
only collides with the Enemies layer. These steps are illustrated below:

Create a new layer called Trap.

Set it to the trap object
(remember to apply the prefab
changes).

Edit the 2D collision matrix.

Make sure you're not editing the 3D Physics settings! They're located in
a similar but different menu: Edit > Project Settings > Physics .

Try playing the game now. The traps now sort of work — they stop the enemies, that is — but they stay stuck at
the very edge of the trap, which doesn't look very realistic. Let's fix that.

Tired of waiting to get bombs? Change the Bomb Count value under
the Lay Bombs component of the hero object in the scene. It's not
cheating if we're just testing the game... right?

The final version of our area clock.

This unwanted behaviour happens because we left our area clock's mode at Instant, meaning that as soon as a
collision is registered between a clock and the enemy, the clock's time scale, zero, is applied. This is rarely good
for real-world scenarios, as it looks rough and unrealistic. Let's change our clock's mode to Point to Edge to
change that.

This brings up a curve in the inspector that allows us to specify how the time scale will progress along the area
clock.

The Y axis is a multiplier of the effect of the clock. For example, Y = 1 means our enemies will be completely
stopped, while Y = 0 means that they'd move at normal speed. For clocks that have a non-zero time scale, you
can even set Y < 0 to reverse the time scale.

The X axis is an indication of progress within the clock. For the Point to Edge mode, X = 0 is the center of the
clock, and X = 1 is the edge.

The Center parameter allows you to offset what point in the clock is
considered to be the center for the curve at X = 0. Since we have a
circle clock, it makes sense to leave it at (0, 0), the center of the circle.
If you change that parameter, you should see the area clock gizmo
move in the scene view as a visual helper.

We want to make the enemies that enter our trap progressively
affected by its pause. In other words, we want our curve at X = 0 to
have full effect (Y = 1), and slowly dampen this effect from the middle
of the clock (X = 0.5) to its edge (X = 1) until it reaches Y = 0. The
picture below explains the curve we apply:

The curve of the clock.

We could have obtained the same effect by using the Distance from
Entry mode, with slightly different settings. See the documentation
about area clock modes and curves to learn more.

Now, apply your prefab changes and try playing your game. Enemies are properly affected by the trap — our
bombs just became much more deadly!

 PlayMaker

Chronos integrates with PlayMaker, the popular visual scripting plugin for Unity. The action scripts and example
scene are under the Chronos/PlayMaker/ folder. If you don't need them, simply uncheck that folder when
importing the package. The actions will be categorized under Chronos for general methods, and Physics [2d]
(Chronos) for the equivalents of rigidbody methods.

There is no specific tutorial or documentation for PlayMaker actions as they follow the same naming
conventions as regular Chronos methods. The help icon on each action is linked to the documentation page for
each method.

A simple PlayMaker FSM with Chronos actions.

http://ludiq.io/chronos/documentation#AreaClock.mode
https://www.assetstore.unity3d.com/en/#!/content/368
http://ludiq.io/chronos/migration

 Conclusion

You are now done with this introductory Chronos tutorial. Congratulations! You turned a simple platformer game
into a time-controlled masterpiece (kind of...). Note that we won't cover how to add the time warp sound and
icons shown in the end result, nor how to change controls, because these features are not Chronos specific.

Here are some suggestions to keep going:

Tinker with the values of the tutorial to make the game your own

To practice using timelines, try making the player's rockets affected by your time effects

To practice using occurrences, try making some more events in the game rewindable: e.g. the player taking
damage, the enemies flipping when they hit a collider, etc.

Explore the Documentation to get a feel of all the possibilities Chronos has to offer.

We have only scratched the surface of what Chronos can help you create. Here at Ludiq, we look forward to
seeing the games you will come up with. Above all, we hope that you will dare to tinker and explore Chronos
and push it to its limits.

As a famous mind at Aperture Science once said: now you're thinking with time control. Or at least something like
that. We're paraphrasing.

Did you spot any error in the tutorial?
If so, please report it in the forum!

http://ludiq.io/chronos/documentation
http://ludiq.io/chronos/forum

