
This cached version of the documentation may be outdated.

For the latest version, please visit the live website.

DOCUMENTATION

 Timekeeper

A global singleton tasked with keeping track of global clocks in the scene. One and only one Timekeeper is
required per scene.

The Timekeeper class follows the singleton design pattern. That's a
complicated way of saying it's an object that can and must exist only
once per scene. This object, called the instance, can be accessed from
anywhere via Timekeeper.instance .

PROPERTIES

Determines whether Chronos should display debug messages and gizmos in the editor.

The maximum loops during which particle systems should be allowed to run before resetting.

This property is a temporary performance hotfix until a better solution
to particle simulation is found. You can set it to 0 or less for infinite
loops, but expect some performance problems.

METHODS

bool debug { get; set; }

int maxParticleLoops { get; set; }

http://ludiq.io/chronos/documentation

An enumeration of all the global clocks on the timekeeper.

Indicates whether the timekeeper has a global clock with the specified key.

Returns the global clock with the specified key.

Adds a global clock with the specified key and returns it.

Removes the global clock with the specified key.

EXAMPLES

Speed up the "Monsters" global clock if it exists:

Create a new clock for enemies and apply it to all Enemy GameObjects:

IEnumerable<GlobalClock> clocks { get; }

bool HasClock(string key)

GlobalClock Clock(string key)

GlobalClock AddClock(string key)

GlobalClock RemoveClock(string key)

if (Timekeeper.instance.HasClock("Monsters"))
{
 Timekeeper.instance.Clock("Monsters").localTimeScale = 2;
}

 Clock

An abstract base component that provides common timing functionality to all types of clocks. This means all the
properties and methods of Clock are available on GlobalClock , LocalClock and AreaClock .

You will almost never use the measurements (time , deltaTime ,
etc.) provided by clocks directly. You should instead use the same
measurements available on the Timeline class, since these combine
those of all relevant clocks for each GameObject.

PROPERTIES

The scale at which the time is passing for the clock. This can be used for slow motion, acceleration, pause or
even rewind effects.

The computed time scale of the clock. This value takes into consideration all of the clock's parameters
(parent , paused , etc.) and multiplies their effect accordingly.

Chronos is never affected by Time.timeScale . You should refrain
from using that property, as it may even cause unexpected behaviour

Clock enemiesClock = Timekeeper.instance.AddClock("Enemies");
Enemy[] enemies = GameObject.FindObjectsOfType<Enemy>();

foreach (Enemy enemy in enemies)
{
 // This assumes every enemy already has a Timeline component
 Timeline timeline = enemy.GetComponent<Timeline>();
 timeline.mode = TimelineMode.Global;
 timeline.globalClock = enemiesClock;
}

float localTimeScale { get; set; } = 1

float timeScale { get; }

http://ludiq.io/chronos/documentation?print#GlobalClock
http://ludiq.io/chronos/documentation?print#LocalClock
http://ludiq.io/chronos/documentation?print#AreaClock
http://ludiq.io/chronos/documentation?print#Timeline
http://ludiq.io/chronos/documentation?print#Clock.parent
http://ludiq.io/chronos/documentation?print#Clock.paused
http://docs.unity3d.com/ScriptReference/Time-timeScale.html

with physics. To control time globally, create a root GlobalClock
instead and make all of your other clocks its descendants.

The time in seconds since the creation of the clock, affected by the time scale. Returns the same value if called
multiple times in a single frame.

Unlike Time.time , this value will not return Time.fixedTime
when called inside MonoBehaviour's FixedUpdate.

The time in seconds since the creation of the clock regardless of the time scale. Returns the same value if called
multiple times in a single frame.

The time in seconds it took to complete the last frame, multiplied by the time scale. Returns the same value if
called multiple times in a single frame.

Unlike Time.deltaTime , this value will not return
Time.fixedDeltaTime when called inside MonoBehaviour's
FixedUpdate.

The interval in seconds at which physics and other fixed frame rate updates, multiplied by the time scale.

The unscaled time in seconds between the start of the game and the creation of the clock.

float time { get; }

float unscaledTime { get; }

float deltaTime { get; }

float fixedDeltaTime { get; }

float startTime { get; }

bool paused { get; set; }

http://ludiq.io/chronos/documentation?print#GlobalClock
http://docs.unity3d.com/ScriptReference/Time-time
http://docs.unity3d.com/ScriptReference/Time-fixedTime
http://docs.unity3d.com/ScriptReference/Time-deltaTime
http://docs.unity3d.com/ScriptReference/Time-fixedDeltaTime

Determines whether the clock is paused. This toggle is especially useful if you want to pause a clock without
having to worry about storing its previous time scale to restore it afterwards.

The parent global clock. The parent clock will multiply its time scale with all of its children, allowing for
cascading time effects.

Determines how the clock combines its time scale with that of its parent.

Value Description

Multiplicative The clock's time scale is multiplied with that of its parent.

Additive The clock's time scale is added to that of its parent.

In most cases, multiplicative blend will yield the expected results.
However, additive blend becomes extremely useful when you have a
parent clock with a time scale of 0.

Indicates the state of the clock.

Value Description

Accelerated Time is accelerated (time scale > 1).

Normal Time is in real-time (time scale = 1).

GlobalClock parent { get; set; }

ClockBlend parentBlend { get; set; } = Multiplicative

TimeState state { get; }

Slowed Time is slowed (0 < time scale < 1).

Paused Time is paused (time scale = 0).

Reversed Time is reversed (time scale < 0).

METHODS

Changes the local time scale smoothly over the given duration in seconds.

This method is not affected by any time scale.

If you enable the steady parameter, duration will apply to a time
scale variation of 1. For example, if you call
LerpTimeScale(3, 2, true) , and the current time scale is 1 ,
the duration of the lerp will be (3 - 1) * 2 = 4 seconds instead
of 2 .

The time scale is only computed once per update to improve performance. If you need to ensure it is correct in
the same frame, call this method to compute it manually.

EXAMPLES

Toggle a pause on the "World" clock when pressing P:

void LerpTimeScale(float timeScale, float duration, bool steady = false)

void ComputeTimeScale()

Same example, this time with smoothing:

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.P))
 {
 GlobalClock worldClock = Timekeeper.instance.Clock("World");

 worldClock.paused = !worldClock.paused;
 }
 }
}

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 bool paused = false;

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.P))
 {
 GlobalClock worldClock = Timekeeper.instance.Clock("World");

 if (!paused)
 {
 worldClock.LerpTimeScale(0, 1); // Change time scale to 0 over 1 second
 paused = true;
 }
 else
 {

 GlobalClock

A Clock that affects all Timeline and other global clocks configured as its children.

PROPERTIES

The unique key of the global clock.

 LocalClock

A Clock that only affects a Timeline attached to the same GameObject.

METHODS

The components used by the local clock are cached for performance optimization. If you add or remove the
Timeline on the GameObject, you need to call this method to update the local clock accordingly.

 AreaClock

A Clock that affects every Timeline within its collider by multiplying its time scale with that of their
observed clock.

Area clocks can be moved, scaled and rotated at runtime. They can even

float key { get; }

void CacheComponents()

http://ludiq.io/chronos/documentation?print#Clock
http://ludiq.io/chronos/documentation?print#Timeline
http://ludiq.io/chronos/documentation?print#Clock
http://ludiq.io/chronos/documentation?print#Timeline
http://ludiq.io/chronos/documentation?print#Clock
http://ludiq.io/chronos/documentation?print#Timeline
http://ludiq.io/chronos/documentation?print#Timeline.clock

stack and combine their effects!

PROPERTIES

Determines how the clock combines its time scale with that of the timelines within.

Value Description

Multiplicative The area clock's time scale is multiplied with that of the timelines.

Additive The area clock's time scale is added to that of the timelines.

In most cases, multiplicative blend will yield the expected results.
However, additive blend becomes extremely useful to affect your
timelines when they have a time scale of 0.

Determines how objects should behave when progressing within the area clock.

Value Description

Instant Objects that enter the clock are instantly affected by its full time scale,
without any smoothing.

PointToEdge

Objects that enter the clock are progressively affected by its time scale,
depending on a A / B ratio where:

A is the distance between center and the object

B is the distance between center and the collider's edge in the
object's direction

ClockBlend innerBlend { get; set; } = Multiplicative

AreaClockMode mode { get; set; }

http://ludiq.io/chronos/documentation?print#AreaClock.center
http://ludiq.io/chronos/documentation?print#AreaClock.center

DistanceFromEntry

Objects that enter the clock are progressively affected by its time scale,
depending on a A / B ratio where:

A is the distance between the object's entry point and its current
position

B is the value of padding

See the Notes section below for diagrams and more explanations for
these modes.

The curve of the area clock. This value is only used for the PointToEdge and DistanceFromEntry
modes.

Mode

Axis PointToEdge DistanceFromEntry

Y Indicates a multiplier of the clock's time scale, from 1 to -1.

X
0 is at the center ;
1 is at the collider's edge.

1 is at entry;
0 is at a distance of padding or
more from entry.

A good use for this curve is to dampen an area clock's effect to make it
seem more natural. Think of the curve's left being the centermost part
of the clock, and right being the edge. Common damping curves for
both modes are illustrated below.

AnimationCurve curve { get; set; }

http://ludiq.io/chronos/documentation?print#AreaClock.padding
http://ludiq.io/chronos/documentation?print#AreaClock-Notes
http://ludiq.io/chronos/documentation?print#AreaClockMode.PointToEdge
http://ludiq.io/chronos/documentation?print#AreaClockMode.DistanceFromEntry
http://ludiq.io/chronos/documentation?print#AreaClock.center
http://ludiq.io/chronos/documentation?print#AreaClock.padding

A common damping curve for the PointToEdge
mode.

A common damping curve for the
DistanceFromEntry mode.

The center of the area clock. This value is only used for the PointToEdge mode.

The padding of the area clock. This value is only used for the DistanceFromEntry mode.

METHODS

Releases the specified timeline from the clock's effects.

Releases all timelines within the clock.

If the timeline enters the clock after having been released, it will be
captured again. To configure which area clocks capture which timelines,
use Unity's collision matrix.

The components used by the area clock are cached for performance optimization. If you add or remove the

Vector center { get; set; }

float padding { get; set; }

void Release(Timeline timeline)

void ReleaseAll()

void CacheComponents()

http://ludiq.io/chronos/documentation?print#AreaClockMode.PointToEdge
http://ludiq.io/chronos/documentation?print#AreaClockMode.DistanceFromEntry
http://docs.unity3d.com/Manual/LayerBasedCollision

Collider on the GameObject, you need to call this method to update the area clock accordingly.

NOTES

This section contains diagrams that help understand how the PointToEdge and DistanceFromEntry
modes function. For simplicity, 2D area clocks are represented, however the same concepts and calculations
apply to 3D area clocks.

POINT TO EDGE

Diagram for objects within a PointToEdge area clock.

Area clock icon : Clock's center

Green edge : Clock's collider

Yellow dot : Object's position

Magenta line : Distance between center and object

Cyan line : Distance between object and edge

In the point to edge mode, the X value of the curve property is calculated by the distance of the object from
center to the edge of the area clock.

In the above diagram, this represents the following ratio:

x = Magenta line / (Cyan line + Magenta line)

http://ludiq.io/chronos/documentation?print#AreaClockMode.PointToEdge
http://ludiq.io/chronos/documentation?print#AreaClock.center
http://ludiq.io/chronos/documentation?print#AreaClock.curve
http://ludiq.io/chronos/documentation?print#AreaClock.center

For example, A and E would have an x value of about 0.8, while B and D would have an x value of about
0.6. In the unlikely event that an object was placed at the exact center of the clock, its x value would be 0.

DISTANCE FROM ENTRY

Diagram for objects within a DistanceFromEntry area clock.

Area clock icon : Clock's local position

Green edge : Clock's collider

Green dot : Object's entry point

Yellow dot : Object's position

Orange line : Length of padding

Cyan edge : Collider inset by padding (for reference only)

Magenta line : Distance between entry and object

Cyan line : Distance remaining before end of padding

In the distance from entry mode, the X value of the curve property is calculated by the distance of the object
from its entry point relative to the value of padding .

In the above diagram, this represents the following ratio:

x = Cyan line / Orange line

For example, A and C would have an x value of about 0.25, while B , D and E would have an x value of 0,
because they went over the maximum distance.

http://ludiq.io/chronos/documentation?print#AreaClockMode.DistanceFromEntry
http://ludiq.io/chronos/documentation?print#AreaClock.padding
http://ludiq.io/chronos/documentation?print#AreaClock.curve
http://ludiq.io/chronos/documentation?print#AreaClock.padding

The inset cyan collider has no real impact on the calculation. It is
merely a helper that lets you visualize how big the value of
padding looks while in the editor. Indeed, unless objects enter

perfectly ortogonally to the collider's edge, their max distance will not
be at the edge of the inset cyan collider.

You can display the cyan and magenta lines for both modes in scene
view by enabling Timekeeper.debug .

 Timeline

A component that combines timing measurements from an observed LocalClock or GlobalClock and
any AreaClock within which it is.

This component should be attached to any GameObject that should be
affected by Chronos.

PROPERTIES

Determines what type of clock the timeline observes.

Value Description

Local The timeline observes a LocalClock attached to the same GameObject.

Global The timeline observes a GlobalClock referenced by globalClock .

TimelineMode mode { get; set; }

http://ludiq.io/chronos/documentation?print#Timekeeper.debug
http://ludiq.io/chronos/documentation?print#LocalClock
http://ludiq.io/chronos/documentation?print#GlobalClock
http://ludiq.io/chronos/documentation?print#AreaClock
http://ludiq.io/chronos/documentation?print#LocalClock
http://ludiq.io/chronos/documentation?print#GlobalClock
http://ludiq.io/chronos/documentation?print#Timeline.globalClock

The key of the GlobalClock that is observed by the timeline. This value is only used for the Global mode.

Determines whether the timeline should record the transform (and physics, if the GameObject has a rigidbody).

The maximum duration in seconds during which snapshots will be recorded. Higher values offer more rewind
time but require more memory.

The interval in seconds at which snapshots will be recorded. Lower values offer more rewind precision but
require more memory.

The clock observed by the timeline.

The time scale of the timeline, computed from all observed clocks. For more information, see
Clock.timeScale .

The delta time of the timeline, computed from all observed clocks. For more information, see
Clock.deltaTime .

A smoothed out delta time. Use this value if you need to avoid spikes and fluctuations in delta times. The
amount of frames over which this value is smoothed can be adjusted via smoothingDeltas .

string globalClockKey { get; set; }

bool recordTransform { get; set; }

float recordingDuration { get; }

float recordingInterval { get; }

Clock clock { get; }

float timeScale { get; }

float deltaTime { get; }

float smoothDeltaTime { get; }

http://ludiq.io/chronos/documentation?print#GlobalClock
http://ludiq.io/chronos/documentation?print#TimelineMode.Global
http://ludiq.io/chronos/documentation?print#Clock.timeScale
http://ludiq.io/chronos/documentation?print#Clock.deltaTime
http://ludiq.io/chronos/documentation?print#Timeline.smoothingDeltas

The amount of frames over which smoothDeltaTime is smoothed.

The fixed delta time of the timeline, computed from all observed clocks. For more information, see
Clock.fixedDeltaTime .

The time in seconds since the creation of this timeline, computed from all observed clocks. For more
information, see Clock.time .

The unscaled time in seconds since the creation of this timeline. For more information, see
Clock.unscaledTime .

Indicates the state of the timeline.

Value Description

Accelerated Time is accelerated (time scale > 1).

Normal Time is in real-time (time scale = 1).

Slowed Time is slowed (0 < time scale < 1).

Paused Time is paused (time scale = 0).

Reversed Time is reversed (time scale < 0).

static int smoothingDeltas { get; set; } = 5

float fixedDeltaTime { get; }

float time { get; }

float unscaledTime { get; }

TimeState state { get; }

http://ludiq.io/chronos/documentation?print#Timeline.smoothDeltaTime
http://ludiq.io/chronos/documentation?print#Clock.fixedDeltaTime
http://ludiq.io/chronos/documentation?print#Clock.time
http://ludiq.io/chronos/documentation?print#Clock.unscaledTime

METHODS

Sets the recording duration and interval in seconds.

This will reset the saved snapshots.

Resets the saved snapshots.

Estimate the memory usage in bytes from the storage of snapshots for the current recording duration and
interval.

Releases the timeline from the specified area clock's effects.

Releases the timeline from the effects of all the area clocks within which it is.

Suspends the coroutine execution for the given amount of seconds. This method should only be used with a
yield statement in coroutines.

There is currently no built-in support for rewindable coroutines due to
limitations in the way .NET enumerators work. This feature is being
considered for a future release if a workaround can be found. For now, if
time is going backward, WaitForSeconds will simply never finish.

void SetRecording(float duration, float inverval)

void ResetRecording()

int EstimateMemoryUsage()

void ReleaseFrom(AreaClock areaClock)

void ReleaseFromAll()

Coroutine WaitForSeconds(float seconds)

The components used by the timeline are cached for performance optimization. If you add or remove built-in
Unity components on the GameObject, you need to call this method to update the timeline accordingly.

OCCURRENCES

To keep this documentation organized, the timeline methods to trigger
occurrences can be found in the occurrence triggers section below.

EVENTS

Sent to every behaviour on the GameObject when the timeline starts a pause.

Sent to every behaviour on the GameObject when the timeline stops a pause.

Sent to every behaviour on the GameObject when the timeline starts a rewind.

Sent to every behaviour on the GameObject when the timeline stops a rewind.

Sent to every behaviour on the GameObject when the timeline exhausts its rewind capacity.

Sent to every behaviour on the GameObject when the timeline starts a slow-down.

void CacheComponents()

void OnStartPause()

void OnStopPause()

void OnStartRewind()

void OnStopRewind()

void OnExhaustRewind()

void OnStartSlowDown()

http://ludiq.io/chronos/documentation?print#Occurrence-Triggers

Sent to every behaviour on the GameObject when the timeline stops a slow-down.

Sent to every behaviour on the GameObject when the timeline starts a fast-forward.

Sent to every behaviour on the GameObject when the timeline stops a fast-forward.

EXAMPLES

Make the GameObject rotate in a framerate-independant manner by the scale of all affected clocks:

Make the GameObject cyan when paused:

void OnStopSlowDown()

void OnStartFastForward()

void OnStopFastForward()

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Update()
 {
 Timeline time = GetComponent<Timeline>();

 transform.Rotate(time.deltaTime * Vector3.one * 20);
 }
}

Create a timeline component procedurally if it doesn't exist:

It is usually much simpler to add a timeline component directly from
the editor — this is purely in case you need to create your GameObjects
procedurally.

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 Color oldColor;

 void OnStartPause()
 {
 Renderer renderer = GetComponent<Renderer>();
 oldColor = renderer.material.color;
 renderer.material.color = Color.cyan;
 }

 void OnStopPause()
 {
 Renderer renderer = GetComponent<Renderer>();
 renderer.material.color = oldColor;
 }
}

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Awake()
 {
 Timeline time = GetComponent<Timeline>();

 if (time == null)
 {
 time = gameObject.AddComponent<Timeline>();
 time.mode = TimelineMode.Global;
 time.globalClock = Timekeeper.instance.Clock("Monsters");
 }
 }
}

Changing the GameObject's color randomly every 5 seconds. This delay will take in consideration pauses, fast-
forwards and slow-downs.

The previous example is not rewindable.

Create a base behaviour that will let you access the timeline component easily:

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 Timeline time;

 void Awake()
 {
 time = GetComponent<Timeline>();

 StartCoroutine(ChangeColor());
 }

 IEnumerator ChangeColor()
 {
 while (true)
 {
 // Use Timeline.waitForSeconds()
 // instead of new WaitForSeconds()

Using a base behaviour is a good Unity design pattern, and it is
certainly not limited to Chronos! If you have any methods or properties
that you use very often, feel free to add them to BaseBehaviour .
They'll be accessible from any script that extends it.

COMPONENTS

Timelines manipulate the built-in Unity components at runtime to adjust their speeds. This allows an effortless
setup in almost all cases. However, it also means that if you edit their speeds directly, Chronos will overwrite
them or behave unexpectedly. To remedy this situation, you should use the properties below instead.

For more information about the script changes needed to migrate to
Chronos, see the Migration page.

ANIMATOR

The speed that is applied to the animator before time effects. Use this property instead of Animator.speed ,

using UnityEngine;
using Chronos;

class BaseBehaviour : MonoBehaviour
{
 public Timeline time
 {
 get
 {
 return GetComponent<Timeline>();
 }
 }
}

// ... In other scripts, simply inherit from
// BaseBehaviour instead of MonoBehaviour

class MyBehaviour : BaseBehaviour
{
 void Update()

float animator.speed { get; set; }

http://ludiq.io/chronos/migration

which will be overwritten by the timeline at runtime.

Unfortunately, if you rewind an animator then let time flow normally, all
of its previous recording will be reset. This is due to how Unity's
animator recording methods are built. There seems to be no alternative
at the moment.

ANIMATION

The speed that is applied to animations before time effects. Use this property instead of
AnimationState.speed , which will be overwritten by the timeline at runtime.

PARTICLESYSTEM

The playback speed that is applied to the particle system before time effects. Use this property instead of
ParticleSystem.playbackSpeed , which will be overwritten by the timeline at runtime.

At extremely low speeds or time scales (< 0.25), particle systems will
appear to stutter. This is due to a bug in Unity's particle simulation
method. A bug report has been submitted here: ParticleSystem.Simulate
truncates first parameter to 2 decimals.

The playback time of the particle system. Use this property instead of ParticleSystem.time , which will be
overwritten by the timeline at runtime.

Indicates whether the particle system is playing. Use this property instead of ParticleSystem.isPlaying ,
which will be overwritten by the timeline at runtime.

float animation.speed { get; set; }

float particleSystem.playbackSpeed { get; set; }

float particleSystem.time { get; set; }

bool particleSystem.isPlaying { get; }

bool particleSystem.isPaused { get; }

http://fogbugz.unity3d.com/default.asp?694191_dso514lin4rf5vbg

Indicates whether the particle system is paused. Use this property instead of ParticleSystem.isPaused ,
which will be overwritten by the timeline at runtime.

Indicates whether the particle system is stopped. Use this property instead of
ParticleSystem.isStopped , which will be overwritten by the timeline at runtime.

Plays the particle system. Use this property instead of ParticleSystem.Play , which will be overwritten by
the timeline at runtime.

Pauses the particle system. Use this property instead of ParticleSystem.Pause , which will be overwritten
by the timeline at runtime.

Determines whether the particle system is alive. Use this method instead of ParticleSystem.IsAlive ,
which will be overwritten by the timeline at runtime.

Stops the particle system. Use this property instead of ParticleSystem.Stop , which will be overwritten by
the timeline at runtime.

RIGIDBODY (2D / 3D)

Determines whether the rigidbody is kinematic before time effects. Use this property instead of
Rigidbody.isKinematic , which will be overwritten by the physics timer at runtime.

bool particleSystem.isStopped { get; }

void particleSystem.Play(bool withChildren = true)

void particleSystem.Pause(bool withChildren = true)

void particleSystem.Stop(bool withChildren = true)

void particleSystem.IsAlive(bool withChildren = true)

bool rigidbody.isKinematic { get; set; }

Determines whether the rigidbody uses gravity. Use this property instead of Rigidbody.useGravity , which
will be overwritten by the physics timer at runtime.

The gravity scale of the rigidbody. Use this property instead of Rigidbody2D.gravityScale , which will be
overwritten by the physics timer at runtime.

The mass of the rigidbody before time effects. Use this property instead of Rigidbody.mass , which will be
overwritten by the physics timer at runtime.

The velocity of the rigidbody before time effects. Use this property instead of Rigidbody.velocity , which
will be overwritten by the physics timer at runtime.

The angular velocity of the rigidbody before time effects. Use this property instead of
Rigidbody.angularVelocity , which will be overwritten by the physics timer at runtime.

The drag of the rigidbody before time effects. Use this property instead of Rigidbody.drag , which will be
overwritten by the physics timer at runtime.

The angular drag of the rigidbody before time effects. Use this property instead of
Rigidbody.angularDrag , which will be overwritten by the physics timer at runtime.

bool rigidbody.useGravity { get; set; } // 3D

float rigidbody.gravityScale { get; set; } // 2D

float rigidbody.mass { get; set; }

Vector3 rigidbody.velocity { get; set; }
Vector2 rigidbody2D.velocity { get; set; }

Vector3 rigidbody.angularVelocity { get; set; }
float rigidbody2D.angularVelocity { get; set; }

float rigidbody.drag { get; set; }

float rigidbody.angularDrag { get; set; }

The equivalent of Rigidbody.AddForce adjusted for time effects.

The equivalent of Rigidbody.AddRelativeForce adjusted for time effects.

The equivalent of Rigidbody.AddForceAtPosition adjusted for time effects.

The equivalent of Rigidbody.AddExplosionForce adjusted for time effects.

The equivalent of Rigidbody.AddTorque adjusted for time effects.

The equivalent of Rigidbody.AddRelativeTorque adjusted for time effects.

AUDIOSOURCE

The pitch that is applied to the audio source before time effects. Use this property instead of
AudioSource.pitch , which will be overwritten by the timeline at runtime.

void rigidbody.AddForce(Vector3 force, ForceMode mode = ForceMode.Force)
void rigidbody2D.AddForce(Vector2 force, ForceMode2D mode = ForceMode2D.Force)

void rigidbody.AddRelativeForce(Vector3 force, ForceMode mode = ForceMode.Force)
void rigidbody2D.AddRelativeForce(Vector2 force, ForceMode2D mode = ForceMode2D.Force

void rigidbody.AddForceAtPosition(Vector3 force, Vector3 position, ForceMode mode = ForceMode
void rigidbody2D.AddForceAtPosition(Vector2 force, Vector2 position, ForceMode2D mode =

void rigidbody.AddExplosionForce(float explosionForce, Vector3 explosionPosition, float explosionRadius

void rigidbody.AddTorque(Vector3 force, ForceMode mode = ForceMode.Force)
void rigidbody2D.AddTorque(Vector2 force, ForceMode2D mode = ForceMode2D.Force)

void rigidbody.AddRelativeTorque(Vector3 force, ForceMode mode = ForceMode.Force)
void rigidbody2D.AddRelativeTorque(Vector2 force, ForceMode2D mode = ForceMode2D.Force

float audioSource.pitch { get; set; }

NAVMESHAGENT

The speed that is applied to the agent before time effects. Use this property instead of
NavMeshAgent.speed , which will be overwritten by the timeline at runtime.

The angular speed that is applied to the agent before time effects. Use this property instead of
NavMeshAgent.angularSpeed , which will be overwritten by the timeline at runtime.

WINDZONE

The wind that is applied to the wind zone before time effects. Use this property instead of
WindZone.windMain , which will be overwritten by the timeline at runtime.

The turbulence that is applied to the wind zone before time effects. Use this property instead of
WindZone.windTurbulence , which will be overwritten by the timeline at runtime.

The pulse magnitude that is applied to the wind zone before time effects. Use this property instead of
WindZone.windPulseMagnitude , which will be overwritten by the timeline at runtime.

The pulse frequency that is applied to the wind zone before time effects. Use this property instead of
WindZone.windPulseFrequency , which will be overwritten by the timeline at runtime.

float navMeshAgent.speed { get; set; }

float navMeshAgent.angularSpeed { get; set; }

float windZone.windMain { get; set; }

float windZone.windTurbulence { get; set; }

float windZone.windPulseMagnitude { get; set; }

float windZone.windPulseFrequency { get; set; }

 Occurrence

An event anchored at a specified moment in time composed of two actions: one when time goes forward, and
another when time goes backward. The latter is most often used to revert the former.

PROPERTIES

The time in seconds on the parent timeline at which the occurrence will happen.

Indicates whether this occurrence can happen more than once; that is, whether it will stay on the timeline once
it has been rewound.

METHODS

The action that is executed when time goes forward.

The action that is executed when time goes backward.

TRIGGERS

The following methods are all called from a Timeline instance. They
are placed in this section for the sake of organization only.

Schedules an occurrence at a specified absolute time in seconds on the timeline.

float time { get; }

bool repeatable { get; }

abstract void Forward()

abstract void Backward()

Occurrence Schedule(float time, bool repeatable, Occurrence occurrence)
Occurrence Schedule(float time, bool repeatable, ForwardAction forward, BackwardAction backward
Occurrence Schedule(float time, ForwardOnlyAction forward)

http://ludiq.io/chronos/documentation?print#Timeline

Executes an occurrence now and places it on the schedule for rewinding.

Plans an occurrence to be executed in the specified delay in seconds.

Creates a "memory" of an occurrence at a specified "past-delay" in seconds. This means that the occurrence will
only be executed if time is rewound, and that it will be executed backward first.

If repeatable is set to false , the occurrence will be cancelled
after it has been rewound. This is useful for code that occurs as a result
of object interaction and would therefore reoccur by itself after a
rewind.

All the trigger methods return the created occurrence as a result, in
case you need to cancel or reschedule it via the methods below.

Removes the specified occurrence from the timeline.

Removes the specified occurrence from the timeline and returns true if it is found. Otherwise, returns
false .

Occurrence Do(bool repeatable, Occurrence occurrence)
Occurrence Do(bool repeatable, ForwardAction forward, BackwardAction backward)

Occurrence Plan(float delay, bool repeatable, Occurrence occurrence)
Occurrence Plan(float delay, bool repeatable, ForwardAction forward, BackwardAction backward
Occurrence Plan(float delay, ForwardOnlyAction forward)

Occurrence Memory(float delay, bool repeatable, Occurrence occurrence)
Occurrence Memory(float delay, bool repeatable, ForwardAction forward, BackwardAction backward
Occurrence Memory(float delay, ForwardOnlyAction forward)

void Cancel(Occurrence occurrence)

bool TryCancel(Occurrence occurrence)

Changes the absolute time in seconds of the specified occurrence on the timeline.

Moves the specified occurrence forward on the timeline by the specified delay in seconds.

Moves the specified occurrence backward on the timeline by the specified delay in seconds.

EXAMPLES

Changing the color of the GameObject to blue 5 seconds after Space is pressed. This delay will take into
consideration pauses, fast-forwards and slow-downs. However, this occurrence is not (yet) rewindable: the object
will not go back to its original color on rewind.

Same example as before, but this time, we pass a color parameter to our method:

void Reschedule(Occurrence occurrence, float time)

void Postpone(Occurrence occurrence, float delay)

void Prepone(Occurrence occurrence, float delay)

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Space))
 {
 GetComponent<Timeline>().Plan(5, ChangeColor);

 // Notice the absence of () after the method name.
 // This is because we are refering to the method itself,
 // not calling it right now.
 }
 }

 void ChangeColor()
 {
 GetComponent<Renderer>.material.color = Color.blue;

If you are unfamiliar with delegates, it is recommended that you take a
look at the MSDN tutorial on delegates. Note, however, that you won't
have to create your own delegate types to use Chronos — you will only
need a basic understanding of what they are and how they can be
created.

Now, let's make our color change a rewindable occurrence. When time is rewound up to the moment the
GameObject became blue, it should automatically revert back to its original color.

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Space))
 {
 GetComponent<Timeline>().Plan(5, delegate { ChangeColor(Color.red); });

 // Here, we create a delegate (an inline method) to
 // be called in 5 seconds. In turn, our delegate calls
 // the ChangeColor with the color red as a parameter.
 }
 }

 void ChangeColor(Color newColor)
 {
 GetComponent<Renderer>.material.color = newColor;

https://msdn.microsoft.com/en-CA/library/aa288459%28v=vs.71%29.aspx

Try experimenting with the repeatable parameter from that
example to get an understanding of what it does. For example, try
setting it to false , then rewinding time after the object turned blue
until it goes back to its original color, then letting time go forward
normally. You'll realize it doesn't turn blue again! That's because the
occurrence was removed from the timeline after rewinding.

That previous example works, but it's a bit tedious to set up. Imagine that we often wanted to have rewindable
color-change occurrences like this one — it would be quite annoying to type that code every time! Fortunately,
we don't have to.

In the following example, we'll create our own Occurrence class and transform our previously lengthy code
into a reusable one-liner.

using UnityEngine;
using Chronos;

class MyBehaviour : MonoBehaviour
{
 void Start()
 {
 GetComponent<Timeline>().Plan
 (
 5, // In 5 seconds...

 true, // ... create a repeatable event...

 delegate // ... that sets the color to blue and saves the previous one...
 {
 Renderer renderer = GetComponent<Renderer>();
 Color previousColor = renderer.material.color;
 renderer.material.color = Color.blue;
 return previousColor; // This will be passed as the first parameter below
 },

You now have the tools to make any kind of custom code work with Chronos; whether time flows normally,
slower, faster or even backwards!

There is one last gotcha. When making rewindable occurrences, it is
crucial to remember that if your code occurs from the interaction
between game objects (e.g. collisions), it should — in almost all cases —
not be set to repeatable .

For example, say you change the color of two objects to red when they
collide (in OnCollisionEnter). If that occurrence is repeatable and
you rewind, then let time run normally, not only will the objects change
to red from the existing occurrence, but they'll collide again, creating a
new occurrence. This can quickly lead to unexpected results, so be
careful!

 Recorder

An abstract base component that saves snapshots of any kind at regular intervals to enable rewinding.

using UnityEngine;
using Chronos;

// Inherit Occurrence and implement Forward() and Backward()
public class ChangeColorOccurrence : Occurrence
{
 Material material;
 Color newColor;
 Color previousColor;

 public ChangeColorOccurrence(Material material, Color newColor)
 {
 this.material = material;
 this.newColor = newColor;
 }

 public override void Forward()
 {
 previousColor = material.color;
 material.color = newColor;

The recorder class is just a shell to properly record snapshots and
rewind by interpolating between them. By itself, it doesn't do anything;
you can't add it to a GameObject. However, it can be extended
(subclassed) to record any type of information in snapshots.

EXAMPLES

CREATING A CUSTOM RECORDER FROM THE EDITOR

Let's say we want to record the health and color of our player (presuming its color changes over time). Our
player script would look similar to this:

All we have to do is add a Custom Recorder component to our game object, and specify which variables to
record:

using UnityEngine;

public class Player : MonoBehaviour
{
 public float health = 100;
 public Color color = Color.blue;

 void Update()
 {
 // ...
 }
}

Configuring the custom recorder component.

That's all there is to it! Rewinding will now properly handle the player's health and color.

Custom recorders support all fields and properties that are value-typed
and not read-only. They work on built-in Unity components and even
custom scripts.

CREATING A CUSTOM RECORDER FROM SCRIPTING

Creating a recorder from scripting is a tiny bit more complex, but it's more efficient in terms of speed and
memory. If you are targetting mobiles, you might want to consider making your recorders from scripting before
releasing, while still using editor-based custom recorders for fast prototyping.

Again, let's record the health and color of our player. We will create a PlayerRecorder script that inherits
Recorder , and implement the 3 mandatory abstract methods:

CopySnapshot: Records the current state of the object and returns a snapshot

ApplySnapshot: Takes a snapshot and applies it to the object

LerpSnapshot: Interpolates between two snapshots and returns the result

You can then attach your PlayerRecorder component, along with a timeline, to your player GameObject. Its
health and color should now be rewindable.

Did you spot any error in the documentation?
If so, please report it in the forum!

using UnityEngine;
using Chronos;

// Make your class inherit Recorder.
// The generic parameter points to the type of snapshot.
public class PlayerRecorder : Recorder<PlayerRecorder.Snapshot>
{
 // The struct that contains each of our snapshot's data.
 // In our case, a health value and a color.
 public struct Snapshot
 {
 public float health;
 public Color color;
 }

 // Record the current health and color in a snapshot
 protected override Snapshot CopySnapshot()
 {
 return new Snapshot()
 {

http://ludiq.io/chronos/forum

