

1.1.2

USER GUIDE

1 TABLE OF CONTENTS

ABOUT ANIMA2D

FEATURES

FIRST STEPS

HOW TO…

… SKIN SPRITES TO BONES

… USE INVERSE KINEMATICS

… SAVE AND LOAD POSES

… CREATE CONTROLS

… CREATE ANIMATIONS

… CREATE AVATAR MASKS

REFERENCE

COMPONENTS

SPRITEMESH EDITOR WINDOW

ONION SKIN

FREQUENTLY ASKED QUESTIONS

 Page 2 of 30

2 ABOUT ANIMA2D

Anima2D is the most advanced and complete 2D Skeletal Animation solution for use
with Unity 5.x. Using Anima2D you will be able to create 2D skinned characters and
backgrounds for your game right inside Unity.

Anima2D extends Unity by adding 2D Bone Hierarchies, a powerful SpriteMesh Editor
with full control over the resulting Mesh and 2D Inverse Kinematics. Anima2D was
created focusing in workflow and seamless Unity Integration.

3 FEATURES

Bone Hierarchies

Create Bone Hierarchies using the new Bone2D
Component. It has never been that easy to create
skeletons: just create, parent and link Anima2D's
bones. Control bone's rotation just by dragging its
gizmo.

Mesh Editor

Create complex Meshes from Sprites. Meshes can
be fine-tuned from the SpriteMesh Editor Window.
You can add and delete vertices, holes, edges and
edge constraints to achieve the desired triangulation.

Automatic Weights

Anima2D calculates Skinning Weights for you
automatically. We use state-of-the-art algorithms to
give you the best weights possible that work out of
the box in most of the situations.

 Page 3 of 30

Weight tool

Edit and fine-tune your Weights using the integrated
Weight tool. It allows single and multiple vertex
editing by adding and subtracting bone's influence,
smoothing between neighboring vertices and
resetting to default automatic values.

Inverse Kinematics

Anima2D includes an easy to use 2D Inverse
Kinematics System (IK) that allows to create
consistent poses for limbs and bone chains of
arbitrary length. IK works in the Scene View too!

Animation Authoring

Anima2D is specially designed to create animations
using Unity’s Animation Window. Move, rotate bones
or IK objects while in Record Mode and bake your
animation to bones when you are done.

Pose Manager

Save and Load skeleton poses with a single click
using the Pose Manager component. Poses are
saved to a separate asset file and can be loaded
while in record mode too!

Bone Controls

Use bone controls to manipulate the position and
rotation of the desired bones even if they are hidden
or locked in the Scene View. Controls are useful to
create animations and will also create new
Keyframes for the affected bones.

 Page 4 of 30

Sprite Optimizer

Anima2D will override the original Unity Sprite’s
geometry. Use that to simplify your native Sprite,
reduce overdraw, reduce vertex count and other
optimizations.

Automatic Mesh Slicing

Create your new and optimized sprite geometry
automatically in a few clicks. Just select the image
area, set the desired parameters and Anima2D will do
the rest.

Full self-overlap control

Configure the Z-Order of your bind poses to define
which parts of the mesh should be in front and which
should be behind in case of self-overlaping.

Atlases

Anima2D is fully compatible with Unity’s native
Atlases thanks to geometry override feature. Your
skinned sprites will always pick up the atlas texture if
available.

Reduce draw-calls

If all your skinned sprites use the same texture atlas
you can combine them in a single skinned mesh at
run-time in order to reduce draw-calls and increase
your game’s performance.

 Page 5 of 30

Onion Skin

Visualize following and previous frames of your
animation while creating it.

Avatar Masks

Create Avatar Masks of your animated elements and
use them in Mecanim layers.

Source Code Included

Anima2D comes with full source code.

Unity Integration

We care about usability and integration. We made
an special effort to follow The Unity Way philosophy
by iterating the tool until it became simple to use yet
powerful. Full Undo support. Asset previews. Drag
and drop to the Scene View. You will forget you are
using a plugin!

 Page 6 of 30

4 FIRST STEPS

To setup Anima2D please follow the next steps:

4.1 STEP 1 – DOWNLOAD ANIMA2D FROM UNITY ASSET STORE
Go to the Asset Store, locate Anima2D and press the download button.

4.2 STEP 2 – IMPORT ANIMA2D UNITY PACKAGE
Once the download has finished, you will be presented with the following window. Press
Import to complete the process.

Package import dialog.

4.3 STEP 3 – START ENJOYING ANIMA2D!
You may want to check the included examples in Assets / Anima2D / Examples, the how
to section for step to step guides on how to use Anima2D and the reference section on
this manual for detailed information on all the components and windows. Enjoy!

 Page 7 of 30

5 HOW TO…

In this section we show you how to use Anima2D for skinning sprites to bones, adding
inverse kinematics and creating skeletal animations:

5.1 … SKIN SPRITES TO BONES

1. Create a SpriteMesh

First of all we need to create a SpriteMesh from a Unity Sprite. A SpriteMesh is a
special Sprite that can be edited and skinned.

To do that, go to your sprites folder in Project View, right-click on a Sprite and
select Create -> Anima2D -> SpriteMesh on the context menu.

Project View context menu.

If you want to create SpriteMeshes for all the Sprites in a texture, right-click on the
texture instead.

Important: Keep one SpriteMesh per Sprite only. Try not to duplicate your
SpriteMesh asset files.

 Page 8 of 30

Another way is to right-click on a GameObject with a SpriteRenderer component
and select 2D Object -> SpriteMesh. This will replace the SpriteRenderer by a
SpriteMeshInstance, generating the corresponding assets with which the plugin
works.

Create SpriteMesh from Hierarchy.

When a SpriteMesh is created, Anima2D will add a new asset similar to a Sprite.

Assets created from the original Sprite.

2. Edit the SpriteMesh

After creating the SpriteMesh you may want to edit the default triangulation to suit
your skinning purposes. To do that, start by opening the SpriteMesh Editor on the

 Page 9 of 30

menu option Window -> Anima2D -> SpriteMesh Editor and select the
previously created asset in the Project View. The Sprite will be shown in the editor
ready for some editing (read section 6 for more detailed information).

SpriteMesh Editor using the sprite’s default triangulation.

In the SpriteMesh Editor you have several options to edit manually your
SpriteMesh to suit your needs:

- Move vertices: Simply left-click and drag the existing vertices to the place

where you want them to be.
- Add vertices: To add new vertices just double-click on the image.
- Delete vertices: To remove an unwanted vertex just left-click on it to select it

and press the Delete / Backspace key on your keyboard.
- Clear selection: Do right-click anywhere.
- Split edges: Clear selection first. Then hold Shift and left-click to split the

closest edge.
- Add edges: Select a single vertex first. Then hold Shift and left-click over

another vertex. Otherwise a new vertex will be created.
- Remove edges: Select the edge you want to remove and press Delete /

Backspace key on the keyboard.
- Add holes: Sometimes you may want to avoid showing a part of the mesh in

your game. To do that you can use a hole, which you can add to an enclosed
area by pressing the Hole button and then double-clicking at the place you
want to add the hole to.

 Page 10 of 30

There is also the possibility to create the topology automatically. Click the Slice
button to toggle the Slice tool (read section 6 for more detailed information).

Slice tool.

Once you have your desired topology press the Apply button on the top right
corner to store the changes. The original Sprite will be modified to use this edited
geometry.

3. Create a SpriteMeshInstance

A SpriteMeshInstance is very similar to a SpriteRenderer component except that
it uses a SpriteMesh instead of a Sprite and it can hold a list of bones. You should
use the same materials you would use with a SpriteRenderer.

When the used SpriteMesh has no skinning information the bone list is editable.

 Page 11 of 30

SpriteMeshInstance with no skinning information.

Otherwise the list will be fixed and will tell you which bones are needed to be able
to enable skinning.

SpriteMeshInstance with skinning information.

To create a SpriteMeshInstance just drag-and-drop a SpriteMesh from the
Project View to the scene.

 Page 12 of 30

4. Create a Bone hierarchy

A Bone2D is an object that have a length and can be linked to a child creating a
chain. Simply parent, unparent, duplicate, rename them, etc. in order to create a
skeleton.

To create a bone right-click in the hierarchy view and select 2D Object -> Bone
from the popup menu, or alternatively use the shortcut Alt + Shift + B. If you
create a bone while another one is selected it will chain, whenever possible.

New bone.

To create a bone chain you need to specify a bone in the Child field. A bone with
a child will orientate to its child and adjust its length to match its end-point to the
child's position.

Bone with a linked child bone.

5. Set bones to a SpriteMeshInstance

Once you have both a SpriteMeshInstance and a bone hierarchy aligned in your
scene, select the SpriteMeshInstance and drag the bone hierarchy to the Set
bones field. Then you will be able to see a list of bones that will be used by the
instance.

 Page 13 of 30

A SpriteMeshInstance with bones.

Another way to add bones is by editing the list manually and dragging the bones to
the list's fields.

Open the SpriteMesh Editor window again and select your SpriteMeshInstance.
This time the bones will appear in the editor.

SpriteMesh Editor showing the referenced bones from the current
SpriteMeshInstance.

 Page 14 of 30

6. Bind bones

Once the bones appear in the Editor click the Bind button to automatically
calculate the bone’s weights. Bones must be inside the Mesh. Select the Overlay
checkbox to visualize the results.

SpriteMesh Editor showing a colored overlay representing the vertex weights.

You can now adjust the weights by selecting vertices and adding/subtracting bone
influence using the Weight Editor (see section 5.2 for more detailed information).

Weights can be smoothed by clicking the Smooth button. You can smooth only a
group of vertices by selecting them first.

To recalculate weights click on the Auto button. This is useful when new vertices
are created after the Bind process.

Click the Apply button to finalize the changes and your SpriteMeshInstance will do
the rest automatically and enable skinning. Now the setup is complete and your
mesh will deform properly as bones rotate and move.

 Page 15 of 30

5.2 … USE INVERSE KINEMATICS

To use Inverse Kinematics select a bone in the hierarchy and select 2D Object -> IK
Limb or 2D Object -> IK CCD. A new GameObject will be created with the
corresponding IK component. Move the newly created GameObject to see IK changing
bone's pose.

IK Limb needs a 2-bone chain to work and is better suited for character's limbs. It uses a
direct law-of-cosine's solver.

Inverse Kinematics controlling the robot’s limbs.

IK CCD can solve any bone chain length by using a Cyclic Coordinate Descent solver.

CCD Inverse Kinematics with a long bone chain.

IK components have a Weight field to specify the IK influence to the final pose.

 Page 16 of 30

5.3 … SAVE AND LOAD POSES

Once we have our character rig we can save our skeletal objects poses by adding the
component PoseManager to the object and clicking on the Create new pose button. It
will store all the child bone’s poses in a separate asset. Restore a pose by clicking on the
desired pose Load button. Click on the Save button to overwrite the pose.

PoseManager component.

5.4 … CREATE CONTROLS

Controls are objects that expose handles that can change bone’s position and rotation.
Controls are useful to expose the main subset of bones that are needed to animate and
hide or lock the others. That way you can create your animations in a cleaner interface.

To create controls, right-click on a bone in the hierarchy and select 2D Object ->
Control. You can always set the bone reference manually afterwards.

Controls.

Select the Rotation Tool in order to switch to rotation handles.

 Page 17 of 30

5.5 … CREATE ANIMATIONS

Finally we can start creating animations using Unity's Animation Window. In this section
we will explore how to create animations using IK and how to bake the animation into
bones.

1. Create an animation file

Open the Animation Window (Window -> Animation), select your character's root
GameObject and select [Create New Clip] in Animation Window dropdown to
create a new clip and AnimatorController.

Creating animations using Unity’s Animation Window.

For further information regarding Unity’s Animation Window please read Using the
Animation View chapter from the Unity Manual.

2. Building animations using IK

Building your animation just by moving bones directly can get complicated when
your character have a complex hierarchy. Fortunately IK allow you to pose your
character by setting the target position of each bone chain.

Animation created using IK objects.

 Page 18 of 30

http://docs.unity3d.com/Manual/animeditor-UsingAnimationEditor.html
http://docs.unity3d.com/Manual/animeditor-UsingAnimationEditor.html

Move and rotate IK objects to create new keyframes and build your animation
using mostly IK curves. This way you will deal with less curves and will solve
complicated movements faster using less keyframes.

3. Bake animations into bones

Now that you have your animations built using IK objects it is time to create curves
for all the affected bones. This way we will avoid making expensive calculations at
runtime. In the other hand this process will add a lot of keyframes and increase the
storage size.

Animation baked to bones.

To bake animations into bones you need to select the animation in the Animation
Window and then select Window -> Anima2D -> Bake Animation. Before doing
this process it is recommended to store a copy of your animation somewhere.
That way you will be able to make changes in the future and repeat the baking.
You can now disable the IK objects and test your new baked animation.

There is also the possibility to use IK to record bone keyframes. This is useful to
create simple animations that can work without IK and you don’t want to bake in
order to keep them as small as possible.

If that is the case, enable the Record toggle in your IK component and all the
bones affected by your IK will be keyframed too.

 Page 19 of 30

5.6 … CREATE AVATAR MASKS

Anima2D allows you to create Avatar Masks for your characters. Avatar Masks are used
in Animator Controller’s layers to specify which objects should be animated. For more
information regarding Avatar Masks check the Avatar Masks section of the Unity Manual.

Avatar Mask.

To create an Avatar Mask, select an object with an Animator component attached and
select Window -> Anima2D -> Create Mask. Save your mask anywhere in your project
using the Save Dialog.

 Page 20 of 30

http://docs.unity3d.com/Manual/class-AvatarMask.html

6. REFERENCE

In this section you will find detailed explanations of all elements included within Anima2D,
from menu elements to components and editor windows.

6.1. COMPONENTS

In Anima2D you can find the following components:

Bone2D

Component to define 2D bone hierarchies in your scene.

- Color: Set the color of the bone.
- Alpha: Set the opacity of the bone.
- Child: Set a child bone to create a chain of bones. The child bone must be a direct

child of the bone. Moving the child bone in the editor will orientate the parent bone
accordingly and adapt its length.

- Length: The length of this bone.

Sprite Mesh Instance

Component responsible for managing the renderers.

- Sprite Mesh: Reference to the SpriteMesh asset.
- Color: The color tint of this instance.

 Page 21 of 30

- Material: Sprite material of this instance.
- Sorting Layer: Sets the sorting layer property to the current renderer.
- Order in layer: Sets the sorting order property to the current renderer.
- Set Bones: Set a hierarchy of bones to the bone list.
- Bones: List of bone references that will be used for skinning.

Ik Limb 2D

IK component that operates two bones.

- Record: Record bone keyframes during animation mode.
- Target: The target bone to apply IK to.
- Weight: The amount of contribution of the IK solver to the final pose.
- Restore Default Pose: Set initial pose before performing calculations.
- Orient Child: Rotate the target’s child bone (if available) to math IK rotation.
- Flip: Use the other pose solution for the limb.

Ik CCD2D

IK component that operates a chain of linked bones.

- Record: Record bone keyframes during animation mode.
- Target: The target bone to apply IK to.
- Weight: The amount of contribution of the IK solver to the final pose.
- Restore Default Pose: Set initial pose before performing calculations.
- Orient Child: Rotate the target’s child bone (if available) to math IK rotation.
- Num bones: The number of bones affected by the IK solver. The maximum is the

root of the bone chain.
- Iterations: The number of iterations of the solver.

 Page 22 of 30

- Damping: Controls the step velocity of the solver. Small values will produce big
steps each iteration. Larger values will produce smaller steps. A high damping
produces a more natural look.

Control
Control components will expose handles for your bones.

- Bone Transform: reference to the target bone transform.

Pose Manager
 Add a Pose Manager component to the root of your bone hierarchy.

- Save button: Overwrite the pose. Will save all the GameObject’s child bone poses.
- Load button: Restore the pose.
- Create new pose button: Creates a new asset containing the current pose.

IkGroup

This component will update a group of IK objects. This is useful when you want to specify
the execution order of IK elements in runtime.

- IK Components: List of IK references.

 Page 23 of 30

SpriteMesh Animation

Use this component to swap the SpriteMesh of a SpriteMeshInstace from an animation
by animating the frame property.

- Frame: Index of the frame to swap.
- Frames: List of SpriteMesh to swap during the animation.

 Page 24 of 30

6.2. SPRITEMESH EDITOR WINDOW

The SpriteMesh Editor Window is Anima2D’s main tool for mesh editing. You will be able
to create any mesh topology, set bind poses, weights, etc.

The Editor is composed by the following elements:

Main editor elements.

1. Toggle bone's visualization.
2. Open/close the Slice tool.
3. Toggle add holes.
4. Bind/Unbind bones.
5. The Inspector.
6. The Weight tool.
7. Apply/Revert changes.

6.2.1 Editing the geometry:
- Move vertices: left-click and drag a vertex.
- Add vertices: double-click on the image.
- Delete vertices: press the Delete / Backspace key to remove a vertex selection.
- Select vertices: Click and drag to use the selection rectangle. Hold Ctrl/Cmd to add

to current selection.
- Clear selection: Do right-click anywhere.

 Page 25 of 30

- Split edges: Clear selection first. Then hold Shift and left-click to split the closest
edge.

- Add edges: Select a single vertex first. Then hold Shift and left-click over another
vertex. Otherwise a new vertex will be created.

- Remove edges: Select the edge you want to remove and press Delete / Backspace
key on the keyboard.

- Add holes: Toggle the Hole button and double-click where you want to add the hole
to.

- Remove bones/bind poses: Select a bone or bind pose and press Delete /
Backspace key.

- Move pivot point: drag the blue circle. Hold Ctrl/Cmd to snap to pixel.

6.2.2. Slice tool:
The Slice tool allows you to cut the mesh automatically from the image outline. Click on
the button Slice to open the tool:

Slice tool parameters.

- Outline detail: The bigger this parameter is the more number of vertices will be
created in the outline.

- Alpha cutout: The alpha tolerance used to discard pixels.
- Tessellation: If you want inner vertices in your mesh topology increase this

parameter:
- Detect holes: Hole areas will be detected (notice that you still need to place a hole in

that area).

Use the rectangle handles to adjust the area of your sprite and configure the parameters.

Then press the Apply button of the tool.

 Page 26 of 30

Rectangle handles and calculated geometry.

6.2.3 Weight tool:
The Weight tool will let you add and subtract bone influence from the selected vertices.

Weight tool.

The Weight tool will show a dropdown list and a disabled slider. Select a bone from the
dropdown list or by left-clicking a bone in the window. Move the slider to the right to add
influence. Move the slider to the left to subtract.

- Smooth: smooth weights from a group of neighbouring vertices by averaging
them.

- Auto: calculates weights from selected vertices automatically. If no vertices are
selected all of them will be used.

- Overlay: shows a coloured mesh representing the per-vertex bone influences.
- Pies: shows a pie chart to each vertex representing its weights.

 Page 27 of 30

6.2.4 Inspectors:
Depending on the selected element the Inspector will show different information and
options:

Empty selection.

- Empty selection: if nothing is selected the inspector will show the sprite and pivot
point of the SpriteMesh.

Bind pose selection.

- Bind pose selection: if a bind pose is selected you will be able to edit the name,
Z-Order and display color. The Z-Order is used to calculate which vertices go in
front or behind the others in case of self-overlap.

Weighted vertex selection

- Vertex (bound) selection: will show the vertex's weights as sliders and each
associated bone. This allows for manual single vertex editing. Move the sliders to
change the weights and associate to other bones by selecting a new bone from
the dropdown list.

 Page 28 of 30

6.3. ONION SKIN

Onion Skin is a tool that shows the previous and following frames of the current
frame in order to get a better picture of the motion.

Onion Skin integrated with Unity’s Animation Window.

Open the Onion Skin Window select Window -> Anima2D -> Onion Skin. Dock
the window next to your Animation Window for a more convenient access. The
window has the following options:

- Activate: Enable or disable the preview.
- Frames: Number of frames to show.
- Step: Number of frames to skip before showing a preview.
- Alpha: Global preview transparency.
- Previous (color): Color of the previous frames.
- Next (color): Color of the next frames.

Tip: Select an object with a renderer component to preview that one alone.

 Page 29 of 30

7. FREQUENTLY ASKED QUESTIONS

Q: I found a bug in Anima2D. Where can I report it?

A: Please, drop us an email to support@anima2d.com if you found any bugs, have an
issue with the plugin or would like to share with us an improvement suggestion. We’d
love to hear from you!

Q: How is the mobile performance?

A: Anima2D doesn't have any impact on the performance as it uses only Unity
components in runtime (SkinnedMeshRenderer). It is mainly an Editor Tool.

 Page 30 of 30

mailto:support@anima2d.com

