Propulsion Physics v1.4

1. Getting Started

Hello and thanks for purchasing Propulsion Physics! Prefabs are included with the tool to let
you quickly start trying out the propulsion scripts in either a 2D or 3D project. To try this out in
your scene, drag on the Propulsion Pad prefab and then drag on the Propulsion Target
prefab. Click on the Propulsion Pad and then drag and drop the Propulsion Target from the
hierarchy pane onto the Target field on the Propulsion Pad.

In the scene view, you should see an arrow connecting the Pad to the Target. That’s the
trajectory the object will take when it gets propelled off the Propulsion Pad. Now let’s propel a
Rigidbody! Create a sphere and add a Rigidbody to it. Next add the PropelRigidbody script to
the sphere. This script tells the Propulsion Pad how to handle propelling this object when they
touch. Now position the sphere over the Pad and let it fall. You should see it fly into the air
and eventually land on the target.

That’s it! Now you can start using Propulsion Physics in your game and enjoy watching
objects get shot around. :)

2. Settings

e Target is the Transform object that the propulsion script will propel the object to. The
included Propulsion Target Prefab is a fast way to set targets for your propulsions.



e Reach Time lets you set how long the propelled object should take to reach the target
based on the editor’s gravity.

e Trajectory Color does what it says. :) This is really handy when you have multiple
propulsions in a scene.

e Show Trajectory lets you either show or hide the trajectory in the scene view.

3. Extending

I's easy to extend Propulsion Physics to work with other types of objects. Say you want a
character controller to be propelled, just implement the IPropelBehavior interface and define a
React method. This React method will be called once your custom script touches the
Propulsion Pad trigger. You can then define how to handle what happens to the character. To
see an example of this, check out the PropelRigidbody script.

Another example would be playing a sound when an object is propelled. Just create a new
propulsion pad class that inherits from PropulsionPad and overrides the PropelObject method.
Upon a successful propulsion it will play the audio:

using UnityEngine;
using System.Collections;

using Polycrime;

public class CustomPropulsionPad : PropulsionPad

{
protected override bool PropelObject(GameObject propelObject, Vector3 velocity)
{
if(base.PropelObject(propelObject, velocity))
{
audio.Play();
}
return true;
}
}

4. Support

If you have any questions about this tool or suggestions that could make it better, please let
me know! You can contact me at caleb@polycrime.com.



mailto:caleb@polycrime.com

5. Thanks

I'd like to thank AnomalusUndrdog and kOrc from the Unity forums for helping make this code
possible. :)

6. Changes

e added support for 2D physics objects

e adjusted calculation for straight overhead trajectories
e created 2D version of propulsion pad prefab

o fixed misspelled class

e added a new demo scene for 2D based objects

v1.3 -

removed audio source from the Propulsion Pad prefab to be more agnostic
added virtual methods to the PropulsionPhysics class to allow easy extending
simplified how the propulsion pad target is rendered

documentation update

created namespace for scripts

v1.2 - documentation update
v1.1 - description update

v1.0 - initial release



