

Await Extensions Documentation

What is async/await?

Async/await​ ​is a syntax sugar, which simplify working with asynchronous code. When you
need wait while some ​Task​ (or object that implement ​GetAwaiter​) completes, you just write
await ​keyword before it and all code below this keyword runs (in case with Unity - on main
thread) after the task is completed. Method which contains ​await ​keyword need mark as
async​.

Async/await mechanism was integrated in C# 5.0 and .NET 4.5.
For details about how use async/await, please visit ​microsoft site​.

Unity and async/await

Unity officially support C# 5.0 and .NET 4.5 start from 2018 version (really it support C# 6.0
and .NET 4.6 too. Also you need switch project scripting runtime version to .NET 4.6 in
“Player Settings”). It means that you can easy use this futures. Look at example below, it
demonstrates how you can wait for 1 realtime second in ​Awake​ method with async/await:

Log(“Awaited”); will be called from main thread after waiting 1000 milliseconds.

You can use all C# 6.0 and .NET 4.6 features in Unity, but out of box Unity does not support
awaiting for different Unity types, for example this code will not work:

It is because Unity does not know how await WaitForSeconds object. If we “tell” Unity “how” -
it can. To “tell” Unity “how” await WaitForSeconds object we need create ​GetAwaiter
extension method for WaitForSeconds class, which return some object which know how
await WaitForSeconds object and which used by await keyword.

If you do not know “awaitable/awaiter” pattern, please visit ​microsoft site​.

http://docs.microsoft.com/
http://docs.microsoft.com/

All time-dependent operations (WaitForFixedUpdate, WaitUntil, awaiting coroutines, awaiting
WWW request, and other) can be easily extended with method described above and then
used with ​await​ keyword.

What “Await Extensions” exactly do?

It extends many Unity classes for work with ​await​ keyword. Look at example below, it shows
all variants of using await with “Await Extensions” asset:

Behind the scenes await extensions use Unity coroutine engine for awaiting. It means that
you can use all unity-time-dependent operations and they will correctly processed;

Threads

What about if you want run your code on background thread, and then run on main thread
again? You can do this with two special classes: ​WaitForBackgroundThread​ and
WaitForUpdate​. You just need await one of them and code below run in the corresponding
thread. Look at code below:

Code after awaiting ​WaitForBackgroundThread ​runs in background thread.
Code after awaiting ​WaitForUpdate ​runs in main thread after “update cycle”. Awaiting
WaitForUpdate​ in main thread just skip one frame.

Asynchronous methods and exceptions

In asynchronous method exceptions catched by task on which it happens. It means that if
you call asynchronous method from synchronous - you need manually wait it (that freeze
main thread), otherwise exceptions remains unhandled. Look at code below:

Here in first case we create task and forget about her (exceptions will not thrown in main
thread), in second case we manually wait it (main thread will freeze, but exceptions will
thrown in main thread).

There is another way to catching exceptions - use ​async void​ method, which called from
synchronous method and call asynchronous method with awaiting it. In this case exception
rethrown in ​UnitySynchronizationContext​ in its ​Update​ method which called from Unity
main thread, it means that Unity will catch this exceptions or you can catch it manually with
try-catch instruction. Look at code below:

Now exceptions will be catched by Unity. But we need always create additional ​async void
method, what is not good. Fortunately you do not need create ​async void ​method, just use
“Await Extensions” task extension method ​CatchErrors​ which rethrow error in main thread if
its occurs.

Remember: ​Never leave exceptions not handled if you do not want a big headache​.

Summing up

Now you do not need to use coroutines directly.
Mark the method as ​async ​and use ​await ​instructions.

You can await:

● Any YieldInstuction object (WaitForEndOfFrame, WaitForFixedUpdate,
WaitForSeconds, Coroutine, AsyncOperation ​and other derived classes​);

● Any CustomYieldInstruction object (WaitForSecondsRealtime, WaitUntil, WaitWhile
and other);

● WWW object with result;
● AssetBundleRequest with result;
● IEnumerator;
● WaitForUpdate object;
● WaitForBackgroundThread object.

After any awaiting of one of enumerated above classes (except for
WaitForBackgroundThread) continuation always runs in main thread.

Contacts

For all questions you can write me a message on e-mail: ​numbagamestudio@gmail.com​;

mailto:numbagamestudio@gmail.com

