
What is More Effective Coroutines Pro?

More Effective Coroutines Pro runs on the exact same super fast and super optimized core that

the free version runs on, and also adds a host of additional methods, most of which can’t be

found in Unity’s coroutines or anywhere else. MEC Pro can be found on the Unity asset store

here.

Editor Update

Unity’s coroutines don’t run in the editor when the app is not playing, but MEC coroutines can.

Editor coroutines are generally used to give the developer a preview of an effect before the game

runs, or to perform update or networking sync tasks that need to be done before the actual app is

compiled. Editor coroutines will all be destroyed when the user hits the play button, and will not

run while in play mode. Time.time and Time.deltaTime will not work while in editor mode,

instead you should use Timing.LocalTime and Timing.DeltaTime.

Be conservative when using editor coroutines: An infinite loop or a very processor intensive

function here can destroy your entire project. Always make sure to have a backup of your project

available whenever you mess with these. Also keep in mind that any changes you make to an

object in your scene in the editor will change the initial state of that object when you run or

compile the app. For example, you could make an editor coroutine that made your character

wink at the developer before play mode, but this would have the side effect of making the

character randomly start mid-wink occasionally when they started or compiled the app.

In order to run in the editor, set the Segment to EditorUpdate or EditorSlowUpdate. Make sure

your class has the [ExecuteInEditMode] tag attached, and then use them normally. Here is an

example:

using UnityEngine;

using System.Collections.Generic;

using MovementEffects;

[ExecuteInEditMode]

public class EditorTesting : MonoBehaviour

{

 void OnEnable()

 {

 Timing.RunCoroutine(_RunOverAndOver(),

Segment.EditorUpdate);

 }

 IEnumerator<float> _RunOverAndOver()

https://www.assetstore.unity3d.com/en/#%21/content/68480
https://www.assetstore.unity3d.com/en/#%21/content/68480

 {

 while(true)

 {

 if(!enabled)

 yield break;

 Timing.RunCoroutine(_MoveThisObject(),

Segment.EditorUpdate);

 yield return Timing.WaitForSeconds(1f);

 }

 }

 IEnumerator<float> _MoveThisObject()

 {

 double startTime = Timing.LocalTime;

 Vector3 direction = Random.onUnitSphere;

 while(Timing.LocalTime - startTime < 7d)

 {

 Vector3 tmp = transform.position;

 tmp += direction * Timing.DeltaTime;

 transform.position = tmp;

 yield return 0f;

 }

 }

}

Realtime Update

Another timing segment you can use in MEC Pro is RealtimeUpdate. This segment is just like

update, but Timing.LocalTime and Timing.DeltaTime ignore Unity’s timescale. This can be

useful while controlling menus that happen while your game is paused. (If you pause by turning

the timescale to 0.)

Manual Timeframe

The manual timeframe segment is useful if your game is running a lot of unusual mechanics. If

you just run them in their default mode then manual timeframe coroutines will run every frame

in the update segment after the update coroutines and before the late update coroutines.

If you change the delegate in Timing.Instance.SetManualTimeframeTime you can make the

coroutines in manual timeframe count time differently than the ones in other segments. For

instance, you could make a scrub bar in your game that would change the rate of time flow, and

even make it go backwards... so long as you wrote your coroutines so they could handle going

backwards. That would look something like this:

void Start ()
{
 Timing.Instance.SetManualTimeframeTime = SetTime
}
private float SetTime(float lastTime)
{
 return lastTime + (Time.deltaTime * speedScrubberValue);
}

The other way that you can use the manual timeframe segment is to make a coroutine that runs

during some frames but not during others. This has been used in strategy games where projectiles

may be flying from one place to another on a board, but they should only move for a fixed period

of time each time you press “next turn.”

Another time you might want to use manual timeframe is when you are using on demand

rendering.

void Start ()
{
 // Set this to false to control frames yourself
 Timing.Instance.AutoTriggerManualTimeframe = false;
 OnDemandRendering.renderFrameInterval = 3;
}
void Update()
{
 if (OnDemandRendering.willCurrentFrameRender)
 Timing.Instance.TriggerManualTimeframeUpdate();
}

Layers and Tags

The free version of MEC only has tags, but MEC Pro adds layers. Collectively tags and layers

are called graffiti because they are both just ways to identify a particular instance of a coroutine.

The only real difference between a layer and a tag is that a layer is an integer and a tag is a

string, but in MEC Pro you have the option of supplying one, the other, or both. Once you supply

graffiti for an instance, you can pause/resume, kill, or use that graffiti for

RunCoroutineSingleton.

https://docs.unity3d.com/2019.3/Documentation/ScriptReference/Rendering.OnDemandRendering.html
https://docs.unity3d.com/2019.3/Documentation/ScriptReference/Rendering.OnDemandRendering.html

In Unity every GameObject is assigned a unique number, which can be accessed by calling

gameObject.GetInstanceID(). The instance id can change every time you run the application, but

it is guaranteed that no other gameObject instance will be assigned the same id during a single

run. So even if you have a swarm of enemies that all have the same scripts attached to them you

can still run them on a layer which is the instance id of the gameObject they were created on and

then kill all coroutines attached to one particular enemy using

Timing.KillCoroutines(enemy.gameObject.GetInstanceID());

If you pass in just the gameObject then MEC Pro will query the instance ID automatically and

put that into the layer, so you don’t have to specify it if you don’t want to. If you had, say, an

amnesia gun you could graffiti all your enemy’s AI logic with both the instance id and a tag:

 Timing.RunCoroutine(_EnemyAI(), gameObject, "AI");
 // Somewhere else in code:
void HitEnemyWithAmnesiaGun(EnemyController enemy)
{
 Timing.KillCoroutines(enemy.gameObject, "AI");
}

KillCoroutines only kills the instance that match all the graffiti that you pass in, so if you coded

it right the above code would make the enemy stand there and do nothing, but would also leave

any other coroutines that might be running on that particular character untouched.

Unity’s coroutines will always cancel all of the coroutines that are associated with a GameObject

whenever you disable that object. Sometimes you would rather just pause a coroutine while it’s

disabled and then resume it as soon as the object is re-enabled. There’s an easy extension method

for that (PauseWith), but if you need complex custom logic then that sort of pattern is really easy

to set up in MEC like this:

void Start ()
{
 Timing.RunCoroutine(_MoveUpAndDown(), gameObject);
}
void OnEnable()
{
 Timing.ResumeCoroutines(gameObject);
}
void OnDisable()
{
 Timing.PauseCoroutines(gameObject);
}
// instead of the above you could use the PauseWith extension:
// Timing.RunCoroutine(_MoveUpAndDown().PauseWith(gameObject));

RunCoroutineSingleton

You often want to run a coroutine, but you don’t want to run multiple copies of that coroutine.

One common use case is to have a button that visibly pops onto the screen and back out as it is

enabled and disabled. You might write a coroutine that expands the transform of that button

every frame in a very pleasing lerp effect, but find that if the user clicks back and forth very

quickly then more than one coroutine can be started at the same time in a very unpleasing way.

RunCoroutineSingleton allows you to fix that. The normal way to use it is to apply a unique tag

to every coroutine in the set (for this example that would be every coroutine that moves that

button). You can then call Timing.RunCoroutineSingleton(_ButtonPopIn(button.tranform,

“HealthButtonMovementSet”);

Tags do result in a memory alloc, so if you are trying to be as efficient as possible with your GC

allocs then you might want to use a handle to define your singleton.

class Foo

{

 CoroutineHandle handle;

 void Start()

 {

 handle = Timing.RunCoroutineSingleton(_MoveThatThing(),

handle, SingletonBehavior.Overwrite);

 }

 ...

}

The third parameter that you pass in is an enum that determines how any conflicts that are found

will be handled. Abort will fail to run the current coroutine if one is already defined that matches

your parameters. AbortAndUnpause will do the same thing as abort, but also unpause the

running coroutine if it was paused. Overwrite will kill any matching coroutines and then run

yours. Wait will automatically keep your coroutine paused until all the matches have finished

and then it will execute.

One thing that you can do with the wait behavior is to set up a sequence of coroutines to run one

after the other by giving them all the same tag and setting them to wait. Each coroutine will only

wait for the coroutines that exist with that tag at the moment it’s created, later additions with the

same tag will be ignored.

Below are some examples of usage:

Timing.RunCoroutineSingleton(_ButtonPopIn(button.transform),

 "HealthButtonMovementSet", SingletonBehavior.Overwrite);

Timing.RunCoroutineSingleton(_ButtonPopIn(button.transform),

 "HealthButtonMovementSet", SingletonBehavior.Wait);

CoroutineHandle handle;

handle = Timing.RunCoroutineSingleton

 (_ButtonPopIn(button.transform), handle);

handle = Timing.RunCoroutineSingleton

 (_ButtonPopIn(button.transform), Segment.FixedUpdate, handle);

Pause and Resume

In More Effective Coroutines Pro you can pause all coroutines that have a particular tag or layer

and resume them later.

This could be useful, for instance, if you had a two layer menu system. If you tagged every

movement coroutine with the string “layer1” and opened a menu on layer 2 you could easily stop

all movement on layer1 with the command “Timing.PauseCoroutines(“layer1″);”. Later, when

your layer 2 menu closed you could resume all movement on layer 1 right where it left off by

calling “Timing.ResumeCoroutines(“layer1″);”

Remember that with tags the string has to match exactly every time, so “layer1” is not the same

as “Layer1”, “layer 1”, or “laier1”. Always make sure you can spell all tags consistently and

watch out for capitalization and spaces (both are ok, but you have to use them the same way

every time).

Controlling Coroutines by Handle

Whenever you call Timing.RunCoroutine(…) a CoroutineHandle object is returned. That object

can be used to make one coroutine wait for another using “yield return

Timing.WaitUntilDone(handle);”. However, in MEC Pro the CoroutineHandle can do more.

Using Tag or Layer you can set or retrieve the associated graffitti.

CoroutineHandle handle = Timing.RunCoroutine(_Foo());

//

string oldTag = handle.Tag;

handle.Tag = "newTag";

if(handle.Layer == null) // No layer is assigned

 handle.Layer = gameObject.GetInstanceID();

Note: Layer is a nullable int (int?) so it may require casting into a regular int in your code, and

you should check whether the value is null when you query either tags or layers (a null value

means that there is no tag or layer assigned.)

Segment can retrieve or change the timing segment that the coroutine is running in.

handle.Segment = Segment.SlowUpdate;

IsRunning, IsPaused, and IsValid

IsRunning returns true until the coroutine terminates, and then it returns false. Paused and/or

locked coroutines are considered to be running.

IsPaused returns true if the coroutine is paused or locked.

IsValid returns true if the coroutine handle has ever pointed to a valid coroutine (regardless of

whether that coroutine is currently running).

Segment returns the coroutine’s segment. You can set it to change the segment.

Linking coroutine handles

Handles can be linked to one another using the LinkCoroutine function. This means that the

“master” coroutine will send a kill command to the “slave” coroutine when it ends (either from a

kill command or just by ending the function). It will also copy any pause or resume commands

(but not any calls to WaitForSeconds).

The reason you would want to link coroutines is so you can start two or more coroutines

independently but treat the whole group like it’s a single coroutine with the same scope as the

master coroutine. A simple example could be if you have a loading progress bar with a coroutine

that updates the progress bar’s position. Let’s say that you find that loading can sometimes get

stuck and you want to create a second coroutine to watch the progress bar and make the words

“sorry for the delay” march around on the screen when it gets stuck. Let’s say there’s also a

cancel button which kills your first coroutine and a pause button which pauses it. You could turn

your single reference into a list, but that starts getting messy fast. The simple way is to just link

the two coroutines in MEC and then you can treat them like a single one. The slave will always

be terminated or paused along with the master.

Getting the current coroutine handle
This is a useful convenience that allows you to retrieve your own handle from within a coroutine.

You can use your own handle to set up links on the fly, change your own tags, coordinate static

lists of different instances of the same coroutine, or all kinds of things.

private IEnumerator<float> _shout(float time, string text)

{

 yield return Timing.WaitForSeconds(time);

 CoroutineHandle myHandle = Timing.CurrentCoroutine;

 Debug.Log(myHandle.Tag + ": " + text);

}

NOTE: If you’re not in a coroutine right now then CurrentCoroutine will return an invalid

handle.

Extension Methods

Extension methods can be extremely powerful tools. They allow you to run the same coroutine,

but change the way it runs while running it. That probably sounds confusing, so here’s an

example:

AddDelay
AddDelay runs the coroutine after a delay.

using UnityEngine;

using UnityEngine.UI;

using System.Collections.Generic;

using MovementEffects;

public class ButtonExample : MonoBehaviour

{

 public Button button1;

 public Button button2;

 public Button button3;

 void Start ()

 {

Timing.RunCoroutine(_MoveBackAndForth(button1).AddDelay(1f));

Timing.RunCoroutine(_MoveBackAndForth(button2).AddDelay(2f));

Timing.RunCoroutine(_MoveBackAndForth(button3).AddDelay(3f));

 }

 private IEnumerator<float> _MoveBackAndForth(Button

myButton)

 {

 Vector3 myPos = myButton.transform.localPosition;

 float time = 0f;

 while(time < 2f)

 {

 myPos.x += Timing.DeltaTime;

 time += Timing.DeltaTime;

 transform.localPosition = myPos;

 yield return 0f;

 }

 while (time < 4f)

 {

 myPos.x -= Timing.DeltaTime;

 time += Timing.DeltaTime;

 transform.localPosition = myPos;

 yield return 0f;

 }

 }

}

The code above will simply move three buttons, first 2 units to the right over 2 seconds, and then

2 units to the left. The interesting part is that during the Timing.RunCoroutine calls we used the

AddDelay function to add a different delay to each call, so button1 will start moving after one

second, button2 will start moving after 2 seconds, and button3 after 3 seconds. This is far cleaner

than passing in the delay and putting it at the top of the function.

CancelWith

This can take either a GameObject or a function that returns a bool. If you pass in a GameObject

then the coroutine will automatically be terminated if the GameObject is destroyed or disabled.

You might want to use this if your coroutine is moving some UI element and that UI element

might occasionally end up being destroyed before the movement completes. CancelWith will

ensure that the coroutine quits cleanly without throwing any exceptions. If you want to safely

modify two or three game objects there are overloads to pass in two or three at a time. If you

want to be safe from more than three game objects going out of scope then you can chain calls to

CancelWith.

If you pass in a function then the coroutine will be terminated as soon as that function returns

false.

int framesLeft = 100;

GameObject obj1;

GameObject obj2;

GameObject obj3;

GameObject obj4;

void Start()

{

 Timing.RunCoroutine(_Coroutine().CancelWith(obj1, obj2,

obj3).CancelWith(obj4));

Timing.RunCoroutine(_Coroutine().CancelWith(CancelFunction));

}

bool CancelFunction()

{

 if(framesLeft <= 0)

 return false;

 framesLeft--;

 return true;

}

PauseWith

PauseWith works just like CancelWith, but when the game object is disabled the coroutine

pauses and then resumes when the game object becomes enabled again.

KillWith

This will watch the coroutine handle that you pass in, and once that coroutine ends it will end

this coroutine as well. This has a similar effect to creating a coroutine link.

Append and Prepend

These two functions can be used to chain two (or more) coroutines together. So this would turn

right and then turn left:

Timing.RunCoroutine(_TurnRight().Append(_TurnLeft()));

They can also be used to append a delegate to the end of a coroutine. So this might be used to run

a coroutine and then destroy the object once it was done:

Timing.RunCoroutine(_MoveToFinalPosition(obj1).Append(delegate

{ Destroy(obj1); }));

Of course in many cases you could have also just added the line to Destroy(obj1) to the end of

the movement coroutine, but if you are using the same move function in several places and you

don’t normally want to destroy the object at the end then this can be a clean way to add that

functionality without fracturing your code base.

Let’s talk briefly about code structure. There are many cases where you might want to call some

event once a coroutine has finished. Ideally a coroutine function will only do the thing that the

function is named for. For instance, the line above will ideally only move an object into its final

position. Your code is less clear if the coroutine function moves an object into its final position

and then calls an event to broadcast that it’s done. It is better to encapsulate the code for the

event in the place that is calling it, i.e. the Run command. By appending the event trigger during

run you make your code more flexible, better encapsulated, and easier to understand when you

read it later.

Superimpose
This quirky function superimposes two coroutines into a single handle. The combined coroutine

won’t finish until both of its contributing coroutines are done. This can be combined with the

WaitUntilDone function to make a coroutine wait until both functions finish before continuing.

Here’s an example of that:

void Start()

{

 var handle =

Timing.RunCoroutine(_NetworkStream1().Superimpose(_NetworkStre

am2()));

 Timing.RunCoroutine(_RunWhenDone(handle));

}

IEnumerator<float> _NetworkStream1()

{

 // Networking stuff happens here.

}

IEnumerator<float> _NetworkStream2()

{

 // Other networking stuff happens here.

}

IEnumerator<float> _RunWhenDone(CoroutineHandle handle)

{

 yield return Timing.WaitUntilDone(handle);

 // This part gets run as soon as both networking streams

are done.

}

Hijack
This fun little function alters the return value of a coroutine. This can be useful for cutscenes or

replays where you want the same code to be executed but in slow motion.

float slowdown = 0.1f;

Timing.RunCoroutine(_MoveButton().Hijack(input =>

{

 if(input <= Timing.LocalTime)

 input = (float)Timing.LocalTime;

 return input + slowdown;

}));

All extension functions are very lightweight additions, so feel free to use them liberally or chain

them together if you like.

RerouteExceptions

Sometimes you just want to handle any exceptions that are thrown inside one particular function

differently than you do in the rest of the app. You would use this extension function for that.

NOTE: This will not prevent any exceptions that are thrown from ending the coroutine function

they were thrown by.

// This reports any exceptions as a regular log message:

Timing.RunCoroutine(_HandleNosePick().RerouteExceptions(ex =>

{ Debug.Log("Unimportant nose picking exception " + ex; });

Fluid Commands
In addition to being able to run coroutines using the syntax “_CoroutineFunc().RunCoroutine();”

you can also use RunCoroutineSingleton and WaitUntilDone this way.

yield return _CoroutineFuncToWaitFor().WaitUntilDone();

For the latest documentation, FAQ, or to contact the author visit http://trinary.tech/category/mec/ and

http://trinary.tech/category/mec/mec-pro/

http://trinary.tech/category/mec/
http://trinary.tech/category/mec/mec-pro/

